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The Lawson Criterion was proposed by John D. Lawson in 1955 as a general 

measure of the conditions necessary for a magnetic fusion device to reach 

thermonuclear ignition. Over the years, similar ignition criteria have been 

proposed which would be suitable for Inertial Confinement Fusion (ICF) designs. 

This paper will compare and contrast several ICF ignition criteria based on 

Lawson’s original ideas. Both analytical and numerical results will be presented 

which will demonstrate that although the various criteria differ in some details, 

they are closely related and perform similarly as ignition criteria.  A simple 

approximation will also be presented which allows the inference of each ignition 

parameter directly from the measured data taken on most shots fired at the 

National Ignition Facility (NIF) with a minimum reliance on computer 

simulations. Evidence will be presented which indicates that the experimentally 

inferred ignition parameters on the best NIF shots are very close to the ignition 

threshold. 

 

I. Introduction 

 

In 1955 John D. Lawson proposed two different ignition criteria for the deuterium-tritium (DT) 

plasma in a magnetic fusion device [Lawson 1955]. The more famous was n > 1.5x10
14

 sec/cc – 

where n is the DT plasma density in atoms/cc and  is the plasma confinement time in seconds. 

The less famous but more useful criterion was the triple product: nT > 3x10
15

 KeV-sec/cc – 

where T is the temperature of the DT plasma in KeV. The triple product can easily be expressed 

as pressure times  or P > 9.6 atm-sec. The exact threshold values for both criteria are 

dependent on the temperature of the plasma.  

 

While the Lawson criteria were originally designed for magnetically confined fusion plasmas, 

many people saw the value of generalizing Lawson’s original criteria to the context of Inertial 

Confinement Fusion (ICF). One such example is the work of Ricardo Betti who published a P 

or  criterion in 2010 [Betti 2010] which is essentially the same as Lawson’s Triple Product nT.  
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Several other ignition criteria have been proposed [Cheng 2014] including a family of ignition 

criteria in the form of: 

 

 𝜌𝑅𝑇𝑛 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑         (1.1) 

 

We will also examine a modification of an ignition parameter introduced by Jim Slone and Mike 

Larson of LLNL. 

 

 𝜂 =
𝑌𝑛𝑜−𝛼

𝐸𝑚𝑎𝑥
          (1.2) 

  

Yno- is the yield of the hotspot with the alpha energy depositions turned off. Emax is the 

maximum of the hotspot thermal energy.  

 

Another important ignition criterion is the Ignition Threshold Factor Experimental or ITFX 

developed at the Lawrence Livermore National Laboratory (LLNL): 

 

 𝐼𝑇𝐹𝑋 =  (
𝑌𝑛

3.2×1015) (
𝐷𝑆𝑅

0.07
)

2.3

> 1.0       (1.3) 

 

Yn is the measured neutron yield of the shot and DSR is measured Down Scattered Ratio which 

is the number of measured neutrons between 10 and 12 MeV divided by the number of measured 

neutrons between 13 and 15 MeV. 

 

In this paper it will be shown the RT
n
 ignition criterion of equation 1.1 is closely related to the 

more familiar P version of the Lawson Criterion. We will also show that the Slone-Larson 

ignition parameter defined in equation 1.2 is equivalent to Betti’s  and both can be derived from 

Lawson’s fundamental hypothesis. It has been shown elsewhere [Betti 2010, Lindl 2014] that a 

simple generalization of the  criterion is closely related to ITFX. Hence we are led to the 

conclusion that most if not all ICF criteria in use today are variations of Lawson’s original idea. 

 

Section II will develop Lawson’s original hypothesis and show how it is related to Betti’s , 

RT
2
 and the Slone-Larson . Section III will present the bare DT sphere problem originally due 

to Heiner Meldner and generalize it to include the physics of inertial tamping due to the cold fuel 

ice. Section IV will show how all of the ignition parameters discussed in this paper can be 

extracted from actual NIF data with minimal reliance on code simulations. Section V will present 

the results of 500 drive variations of a typical NIF design and show how well each of the ignition 

parameters perform as ignition criteria. Section VI will present the ignition parameters measured 

on actual NIF shots and compare them with the behavior of code simulations. This comparison 

will demonstrate that the best NIF shots are close to the expected ignition threshold. Finally 

section VII will finish up with some conclusions. 
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II. Lawson’s Criterion with Generalizations 

 

Lawson’s principal assumption was that ignition will occur whenever the heating rate due to 

thermonuclear reactions exceeds the plasma cooling rate due to various loss mechanisms: 

 

 𝐸̇𝑇𝑁 >  
𝐸𝑃𝑙𝑎𝑠𝑚𝑎

𝜏
          (2.1) 

 

𝐸𝑃𝑙𝑎𝑠𝑚𝑎 is the thermal energy of the ions and the electrons. 𝐸̇𝑇𝑁 is the thermonuclear energy 

deposition rate in the plasma. It has units of energy per time per volume. Finally  is the plasma 

confinement time or energy dissipation time. 

 

The thermonuclear energy deposition rate per volume of the plasma is: 

 

 𝐸̇𝑇𝑁 = 𝑛2𝜒𝐷𝜒𝑇〈𝜎𝑣(𝑇)〉𝐾𝐵𝑇𝛼        (2.2) 

 

The symbol n is the ion number density. D and T are the deuterium and tritium atom fractions 

which are normally set to 0.5 for an equimolar mixture. KB = 1.60217657x10
-9

 is the Boltzmann 

constant which converts temperature from Kilovolts into energy in ergs. T = 3541 KeV is the 

energy of the D+T alpha particle in Kilovolts. <v(T)> is the Maxwell averaged thermonuclear 

reaction rate for the D+T reaction at temperature T. <v> conventionally has units of cm
3
/sec. 

 

Equation 2.2 assumes all of the energy of the 3.5 MeV alpha particles is instantly deposited into 

the DT plasma and that all of the 14.1 MeV thermonuclear neutrons escape the plasma without 

depositing any energy.  

 

The energy of the plasma is given by the ideal gas law: 

 

 𝐸𝑃𝑙𝑎𝑠𝑚𝑎 = 2 (
3

2
𝑛𝐾𝐵𝑇)        (2.3) 

 

The factor or 2 comes from the fact that for plasmas consisting of hydrogen isotopes, the ions 

and electrons contribute equally to the thermal energy. Equation 2.3 assumes that the plasma is 

fully ionized and the electrons and ions are in thermal equilibrium and characterized by a single 

plasma temperature T. The heat capacity of the radiation field has been ignored. 

 

Putting equations 2.2 and 2.3 into 2.1 leads to: 

 

 𝑛𝑇𝜏 >
12

𝑇𝛼

𝑇2

〈𝜎𝑣〉
[

1

4𝜒𝐷𝜒𝑇
]         (2.4) 
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The function T
2
/<v> has a minimum at 13.6 KeV and at this temperature if we put in the 

numbers for a equimolar mixture of DT we get: 

 

 𝑛𝑇𝜏 > 3.0 × 1015         (2.5) 

 

This is the usual form of Lawson’s triple product, but it is easy to re-express the triple product in 

terms of P. The material pressure of a fully ionized plasma is: 

 

 𝑃 = 2𝐾𝐵𝑛𝑇          (2.6) 

 

Again the factor of two comes from the fact that both the ions and electrons contribute equally to 

the pressure. Combining equations 2.4 and 2.6 together gives an expression for P: 

 

 𝑃𝜏 >  
24𝐾𝐵

𝑇𝛼
(

𝑇2

〈𝜎𝑣〉
) [

1

4𝜒𝐷𝜒𝑇
]        (2.7) 

 

Equation 2.7 shows that the exact value of the P threshold for ignition depends on the plasma 

temperature. For this reason, by itself, P is not a very good ignition parameter. This problem can 

be addressed by introducing the P ignition threshold function as: 

 

 (𝑃𝜏)𝑖𝑔 =  
24𝐾𝐵

𝑇𝛼
(

𝑇2

〈𝜎𝑣〉
) [

1

4𝜒𝐷𝜒𝑇
]         (2.8a) 

 (𝑃𝜏)𝑖𝑔 =  1.086 × 10−17 (
𝑇2

〈𝜎𝑣〉
) [

1

4𝜒𝐷𝜒𝑇
]       (2.8b) 

  

(𝑃𝜏)𝑖𝑔 in the second equation 2.8b will be in units of Gb-ns if the temperature is in KeV and 

<v> has units of cm
3
/sec. Note that gigibars-nanoseconds (Gb-ns) is equivalent to atmosphere-

seconds.  

 

Over a limited range of temperatures, the Maxwell averaged D+T reaction can be approximated 

as a power law: 

 

 〈𝜎𝑣〉 =  〈𝜎𝑣〉0𝑇𝑏         (2.9a) 

 

 For 3.0 KeV < T < 4.2 KeV  𝑏 = 4.01 and 〈𝜎𝑣〉0 = 2.2160 × 10−20 cc/sec (2.9b) 

 For 4.0 KeV < T < 6.0 KeV  𝑏 = 3.59 and 〈𝜎𝑣〉0 = 4.0113 × 10−20 cc/sec (2.9c) 

 

Putting equation 2.8b into 2.9b gives a power law expression for (𝑃𝜏)𝑖𝑔: 

 

 (𝑃𝜏)𝑖𝑔 =  490.0 (
1

𝑇2.01) [
1

4𝜒𝐷𝜒𝑇
]        (2.10) 
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Again T is in KeV and (𝑃𝜏)𝑖𝑔 is in Gb-ns or atm-sec. 

 

Ricardo Betti introduced a new ignition parameter he labeled  [Betti 2010], which is defined as: 

 

 𝜒 =  
𝑃𝜏

(𝑃𝜏)𝑖𝑔
= 9.21 × 1016𝑃𝜏

〈𝜎𝑣〉

𝑇2
[4𝜒𝐷𝜒𝑇]      (2.11a) 

 𝜒 =  2.041 × 10−3𝑃𝜏𝑇2.01[4𝜒𝐷𝜒𝑇]       (2.11b) 

 

The ignition condition is simply that  must exceed unity.  

 

In his 2010 paper Betti goes on to make a number of analytic approximations for  which allow 

him to compare  to ITFX. However in most applications, it is simpler and perhaps more 

accurate to leave  defined in terms of P,  and T. These values can be taken from either code 

simulations or inferred directly from experiment. 

 

The usual practice is to calculate ignition parameters like  using simulations in which the 

energy deposition due to the 3.5 MeV thermonuclear alpha particle is ignored. These are known 

as no-alpha calculations. This is done because the ignition threshold appears very sharp when the 

calculated capsule yield with alpha depositions on is plotted against  with alpha depositions off. 

But one must keep in mind that this is an artificial trick. In nature, it not possible to shut off 

alpha depositions and for this reason the values of  inferred from actually NIF shots should be 

compared to calculations with alpha depositions turned on. 

 

There is a way to experimental measure the no-alpha value of  on some NIF shots. The trick is 

to use DT ice in which the deuterium concentration is kept very low and hydrogen is introduced. 

If the concentrations of tritium and hydrogen are adjusted properly the initial density of the DT 

and the ionized equation of state can be made very close to the case of an equimolar mix of 

deuterium and tritium. However because the concentration of deuterium is low, alpha depositions 

from the D+T reaction will never become significant enough to deviate from the no-alpha case. 

 

The Slone-Larson Figure-of-Merit 

 

In the 1970’s and 1980’s, Jim Slone and Mike Larson of Livermore defined their own ignition 

parameter which unknown to them was a slight variation of Lawson’s criterion. Slone’s original 

figure-of-merit was simply the specific yield of a no-alpha calculation: 

 

 𝐹𝑂𝑀𝑆𝑙𝑜𝑛𝑒 =
𝑌𝑛𝑜−𝛼

𝑀𝐷𝑇
         (2.12) 
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The definition of 𝑌𝑛𝑜−𝛼 is a little confusing. It is the total of all the alpha energy produced in a 

calculation in which the alpha particles are produced but not allowed to deposit any energy back 

into the hotspot. MDT is the mass of the DT in the hotspot [Slone 1983]. 

 

Mike Larson argued that the FOM needed to take into account the temperature of the hotspot. 

Larson reasoned that the hotter a hotspot was, the more rapidly heat conduction would cool it. 

Larson’s figure-of-merit was: 

 

 𝐹𝑂𝑀𝐿𝑎𝑟𝑠𝑜𝑛 =
𝑌𝑛𝑜−𝛼

𝑀𝐷𝑇(𝑇∗)5/2        (2.13) 

 

The exponent of 5/2 was chosen because the Spitzer thermal conductivity is proportional to the 

plasma temperature raised to the 5/2 power. The characteristic temperature T* (also known as 

the breakaway temperature) was defined as the spatially averaged hotspot temperature with alpha 

depositions off at the point in time when the average hotspot temperature with alpha depositions 

on exceeded the hotspot temperature with alpha depositions off by exactly 5%. This sounds 

confusing but in simple terms T* is the temperature at which the alpha-on and alpha-off 

calculations first begin to diverge from one another [Larson 1983]. 

 

I worked with both Jim Slone and Mike Larson closely during the 1980’s and I never heard 

either of them mention any idea that their figures-of-merit were is some way related to the 

Lawson criterion. At the time it didn’t occur to me that their criteria was related to Lawson’s and 

very likely it never occurred to either of them. 

 

However today it is obvious that Slone and Larson were very close to a variation of the Lawson 

criterion. If instead of the break-away temperature to the 5/2 power, Larson had used the 

maximum no-alpha hotspot temperature to the first power, he would have come very close to 

something proportional to Betti’s . 

 

 𝐹𝑂𝑀𝐿𝑎𝑟𝑠𝑜𝑛−𝑚𝑜𝑑𝑖𝑓𝑒𝑑 =
𝑌𝑛𝑜−𝛼

𝑀𝐷𝑇𝑇𝑚𝑎𝑥
       (2.14) 

 

To see this let’s go back to Lawson’s starting hypothesis in equations 2.1: 

 

 𝐸̇𝑇𝑁 >  
𝐸𝑃𝑙𝑎𝑠𝑚𝑎

𝜏
          (2.1) 

 

Both the thermonuclear energy deposition rate and the plasma energy in equation 2.1 are 

expressed as energy per cubic volume. However there is no reason equation 2.1 cannot be 

integrated over the entire hotspot volume to give: 

  

 𝑌̇𝛼 >  
𝐸𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑡𝑠𝑝𝑜𝑡

𝜏
         (2.15) 
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𝑌̇𝛼 is the total instantaneous thermonuclear alpha energy production rate integrated over the 

entire hotspot and 𝐸𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑡𝑠𝑝𝑜𝑡 is the thermal energy of the hotspot. Equation 2.15 can be 

rearranged slightly to give: 

 

 𝜂 =
𝑌̇𝛼𝜏

𝐸𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑡𝑠𝑝𝑜𝑡
>  1         (2.16) 

 

It may not be obvious, but the dimensionless ratio defined as  in equation 2.16 is essentially the 

same as Betti’s  in equation 2.11. Only one step is left to transform equation 2.16 into the 

modified Larson figure of merit and that is to replace 𝑌̇𝛼𝜏 by the time integrated yield of the 

hotspot. 

 

 𝜂 =
𝑌𝑛𝑜−𝛼

𝐸𝑀𝑎𝑥 𝑛𝑜−𝛼
>  1         (2.17a) 

 

With 

 𝑌𝑛𝑜−𝛼 = ∫ 𝑌̇𝛼𝑑𝑡         (2.17b) 

 

The definition of 𝑌𝑛𝑜−𝛼 here in equation 2.17 is the same as the no-alpha yield used by Slone and 

Larson. The definition of 𝐸𝑀𝑎𝑥 𝑛𝑜−𝛼 is the maximum thermal energy of the hotspot in a no-alpha 

calculation. Notice that 𝐸𝑀𝑎𝑥 𝑛𝑜−𝛼 should be proportional to 𝑀𝐷𝑇𝑇𝑚𝑎𝑥. This completes the proof 

that the modified version of the Slone-Larson figure-of-merit in equation 2.14 is a variation of 

the Lawson criterion and is in fact proportional to Betti’s .  

 

The RT
n
 Ignition Criteria 

 

It is easy to convert the Lawson criterion or Betti’s  criterion into an ignition criterion involving 

RT
n
 [Cheng 2014]. The exact value of the temperature exponent n depends on the power law 

used to approximate the thermonuclear reaction rate <v>. However numerical simulation in 

section III indicate that generally n = 2 gives the best overall results.  

 

We begin with Lawson’s expression for the triple product found in equation in 2.4: 

 

 𝑛𝑇𝜏 >
12

𝑇𝛼

𝑇2

〈𝜎𝑣〉
[

1

4𝜒𝐷𝜒𝑇
]         (2.4) 

 

Note that the ion number density is proportional to the mass density: 

 

 𝑛 =
𝑁0𝜌

𝐴̅
          (2.18) 
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𝑁0 = 6.0221413 × 1023 is Avogadro's number. 𝐴̅ is the atomic mass of the DT plasma and  is 

the mass density. The atomic mass depends slightly on the composition of the DT plasma: 

 

 𝐴̅ = 𝐴𝐷𝜒𝐷 + 𝐴𝑇𝜒𝑇 = 𝐴𝐷𝑇 (
𝐴𝐷

𝐴𝐷𝑇
𝜒𝐷 +

𝐴𝑇

𝐴𝐷𝑇
𝜒𝑇) = 𝐴𝐷𝑇(0.8𝜒𝐷 + 1.2𝜒𝑇)  (2.19) 

 

AD = 2.014102 is the deuteron mass. AT = 3.016050 is the triton mass and ADT = 2.5373 is the 

average atomic mass of an equimolar DT mixture. Putting equations 2.18 and 2.19 into equation 

2.4 and rearranging a little gives: 

 

 𝜌𝑇2𝜏 >
12𝐴𝐷𝑇

𝑁0𝑇𝛼

𝑇3

〈𝜎𝑣〉
[

0.8𝜒𝐷+1.2𝜒𝑇

4𝜒𝐷𝜒𝑇
]       (2.20) 

 

Now it is necessary to make an approximation for the time scale . The obvious choice is to set  

equal to the sonic transit time across both the hotspot and the cold fuel: 

 

 𝜏 =
𝑅

𝐶ℎ
+

Δ𝑅

𝐶𝑐
=

𝑅

𝐶ℎ
(1 +

Δ𝑅𝐶ℎ

𝑅𝐶𝑐
)        (2.21) 

 

R is the radius of the hotspot and R is the radial thickness of the DT ice shell surrounding the 

hotspot. Ch is the speed of sound of the hotspot and Cc is the speed of sound of the cold fuel. The 

hotspot is not degenerate and therefore the ideal gas is a good approximation. The speed of 

sound for an ideal gas can be expressed as: 

 

 𝐶ℎ = √
𝛾𝑃

𝜌
          (2.22) 

 

P is the pressure of the hotspot and  is the density of the hotspot.  is the adiabatic exponent for 

an ideal gas which is 5/3.  

 

The cold fuel is degenerate and the ideal gas law is not an appropriate. Instead we may 

approximate the electrons of the cold fuel as a degenerate Thomas-Fermi gas in which case the 

pressure is: 

  

 𝑃𝑐 = 𝑏𝜌𝑐
5/3

          (2.23) 

 

Pc is the pressure of the cold fuel and c is the density of the cold fuel. The symbol b is a 

constant. The speed of sound squared for a Thomas-Fermi gas is: 

 

 𝐶𝑐
2 =

𝜕𝑃𝑐

𝜕𝜌
=

5

3

𝑃𝑐

𝜌𝑐
         (2.24) 
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Nature is very kind to us here. Even though the cold fuel cannot be described by the ideal gas, 

the speed of sound for the cold fuel takes on the same form as the speed of sound for an ideal 

gas. 

 

 𝐶𝑐 = √
𝛾𝑃𝑐

𝜌𝑐
          (2.25) 

 

Even the adiabatic gamma for the Thomas-Fermi gas is the same as the adiabatic gamma for an 

ideal gas.  

 

We are interested in hotspot or isobaric ignition which means that just before ignition, the 

hotspot and cold fuel have nearly the same pressure, that is we can assume 𝑃𝑐 = 𝑃. Using the 

expressions for the speeds of sound in equations 2.22, 2.25 and the assumption of pressure 

equilibrium allows us to rewrite the expression for the confinement time as: 

 

 𝜏 =
𝑅

𝐶ℎ
(1 +

Δ𝑅

𝑅
√

𝜌𝑐

𝜌
) =

𝑅

𝐶ℎ
(1 +

ρ𝑐Δ𝑅

𝜌𝑅
√

𝜌

𝜌𝑐
)      (2.26) 

 

Notice that rewritten this way, the confinement time in equation 2.26, looks like the confinement 

time of a bare hotspot times a factor greater than one which represents the extra confinement 

time due to the hydrodynamic tamping of the cold ice shell. 

 

Again using the ideal gas law the speed of sound of the hotspot can be expressed as: 

 

 𝐶ℎ = √
𝛾2𝑁0𝐾𝐵𝑇

𝐴̅
         (2.27) 

 

Inserting equations 2.26 and 2.27 back into equation 2.20 allows us to write an expression for 

RT
2
. 

 

 𝜌𝑅𝑇2 >
12

𝑇𝛼
√

2𝛾𝐴𝐷𝑇𝐾𝐵

𝑁0

𝑇3.5

〈𝜎𝑣〉
{

1

1+
ρ𝑐Δ𝑅

𝜌𝑅
√

𝜌

𝜌𝑐

} [
√0.8𝜒𝐷+1.2𝜒𝑇

4𝜒𝐷𝜒𝑇
]    (2.28a) 

 

The expression in the curly brackets represents the extra factor due to tamping. The expression in 

the square brackets is unity for an equimolar mixture of deuterium and tritium. Putting in the 

numbers for the conventional units gives: 
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 𝜌𝑅𝑇2 > 5.06116 × 10−19 𝑇3.5

〈𝜎𝑣〉
{

1

1+
ρ𝑐Δ𝑅

𝜌𝑅
√

𝜌

𝜌𝑐

} [
√0.8𝜒𝐷+1.2𝜒𝑇

4𝜒𝐷𝜒𝑇
]    (2.28b) 

 

Numerical simulations indicate the best results are obtained by using the higher temperature fit to 

the thermonuclear reaction rate found in equation 2.9c, giving: 

 

 𝜌𝑅𝑇2 >
12.6172

𝑇0.09 {
1

1+
ρ𝑐Δ𝑅

𝜌𝑅
√

𝜌

𝜌𝑐

} [
√0.8𝜒𝐷+1.2𝜒𝑇

4𝜒𝐷𝜒𝑇
]      (2.28c) 

 

Just as Ricardo Betti did, it is convenient to define an ignition parameter which is a 

dimensionless ratio. 

 

 𝛽 =  
𝜌𝑅𝑇2

5.06115×10−19

〈𝜎𝑣〉

𝑇3.5
{1 +

ρ𝑐Δ𝑅

𝜌𝑅
√

𝜌

𝜌𝑐
} [

4𝜒𝐷𝜒𝑇

√0.8𝜒𝐷+1.2𝜒𝑇
] > 1    (2.29a) 

 

 𝛽 =  
𝜌𝑅𝑇2

12.6172
𝑇0.09 {1 +

ρ𝑐Δ𝑅

𝜌𝑅
√

𝜌

𝜌𝑐
} [

4𝜒𝐷𝜒𝑇

√0.8𝜒𝐷+1.2𝜒𝑇
] >  1     (2.29b) 

 

Defined this way the ignition condition is simply that  must be greater than unity. 

 

In section III, numerical simulations will demonstrate that that  > 1 is a valid ignition criterion 

and we will derive a simpler form for the tamping factor. In section V, realistic capsule 

simulations will demonstrate that , ,  and ITFX all perform very well as ignition parameters. 
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III. The Generalized Meldner Problem 

 

In the late 1970’s and early 1980’s, Heiner Meldner was an ICF designer at the Lawrence 

Livermore National Laboratory (LLNL). He was trying to understand the thermonuclear ignition 

threshold for Laser Fusion designs. Meldner took an ICF simulation code, with all relevant 

physics turned on and mapped out the burn/no-burn ignition conditions for a 1 milligram bare 

sphere of DT plasma [Meldner 1981]. In the modern versions of Meldner’s ignition condition 

used in this report, a calculation is scored as burned if the specific yield exceeds 10 MJ/mg. 

However ignition is usually so abrupt that almost any method of scoring ignition would give 

very similar results.  

 

Meldner plotted the boundary between burn and no-burn regions on a graph with the initial areal 

density or R of the sphere on the horizontal axis and the initial ion temperature on the vertical 

axis. Figure 3.1 below shows a modern reproduction of Meldner’s exercise using CALEICF with 

thermonuclear burn, multi-group radiation transport, electron thermal conduction and charged 

particle transport all turned on. Such ignition boundary plots in the plane of R and Tion quickly 

became known as Meldner Curves around Livermore. 

 

 
 

The initial conditions of a bare sphere are completely specified by three numbers. The most 

obvious coordinate set would be initial density, initial temperature and initial radius. An equally 

acceptable coordinate set would be initial areal density or R, initial temperature and the mass of 

the sphere. A Meldner curve only plots the burn/no-burn boundary for a sphere of a single mass 

Burn Region 

No Burn Region 

Meldner Curve for 1 mg DT 

Figure 3.1: Modern reproduction of Heiner Meldner’s calculation of 

the burn and no-burn regions of a 1mg bare sphere of DT plasma. 

Such ignition curves became known as Meldner Curves at LLNL. 

R (gm/cm2) 

T
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n
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K
eV
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and does not represent the ignition condition for the general case of all possible bare spheres of 

DT. However Meldner generated his ignition curves for bare DT spheres of several different 

masses and found that the ignition boundaries were not very sensitive to the mass but they were 

of course sensitive to the temperature and R of the sphere. Figure 3.2 shows three different 

Meldner curves for DT spheres with masses of 0.1 mg, 1.0 mg and 10 mg. The three curves are 

not identical but all three are very similar particularly in the region of R < 1 where most ICF 

hotspots operate. 

 

 
By the mid 1980’s, it became common practice to use only the 1 mg Meldner curve and make 

the assumption that this was a universal ignition curve for any ICF hotspot. This approximation 

of using the 1 mg Meldner curve as the universal ignition threshold condition was championed 

mostly by Dick Doyas [Doyas 1984].  

 

Meldner and Doyas did not specify a well-defined ignition condition analogous to the Lawson 

criterion instead they used the Meldner curve in a qualitative way which is illustrated in figures 

3.3 and 3.4 with a modern NIF shot. The blue and red curves in figure 3.3 represent the 

calculated trajectories of the hot spot for NIF Shot N110620 in the space of R and Tion. Some 

care was taken so that the R and temperature in these plots represent the conditions for the hot 

spot and not averaged over the entire DT fuel. The blue curve represents the trajectory of a clean 

one dimensional calculation with thermonuclear reactions turn on (labeled Burn On). It is 

apparent that the clean one dimensional calculation of this shot ignites with a maximum hot spot 

temperature which is off scale at 100 KeV. The red curve represents the trajectory of a clean one 

dimensional calculation with thermonuclear reactions turned off (labeled Burn Off). The 

Burn Region 

No Burn Region 

Meldner Curve for 10 mg DT 

Meldner Curve for 1.0 mg DT 

Meldner Curve for 0.1 mg DT 

R (gm/cm2) 

T
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n
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K
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Figure 3.2: Meldner curves for 0.1 mg, 1.0 mg and 10 mg DT 

spheres. The ignition boundary does depend on the mass of the 

sphere, but the dependence on mass is not strong. 
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magenta curve is the 1 mg Meldner curve. Notice that the burn-off trajectory does not cross the 

Meldner curve even though the burn-on calculation ignites. This apparent discrepancy is due to 

the inertial tamping effect of the cold fuel which was excluded from Meldner’s bare sphere 

calculations. 

 

 

Burn Region 

No Burn Region 

Burn On Calculation of N110620 

Burn Off Calculation of N110620 

Meldner Curve for 1 mg DT 

R (gm/cm2) 

T
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n
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K
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) 

Figure 3.3: Meldner curve for a 1 mg DT sphere 

along with the calculated burn-on and burn-off 

trajectories of NIF shot N110620. 

Burn Region 

No Burn Region 

Meldner Curve for 1 mg DT 

Clean Burn Off Calculation of N110620  

KL Mix Burn On Calculation of N110620  
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Figure 3.4: Meldner curve for a 1 mg DT sphere along with a clean burn-

off calculation of NIF shot N110620 and a KL Mix burn-on calculation of 

shot N110620. With the mix model turned on, the hotspot trajectory falls 

even lower and the shot fails to ignite. 
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Meldner’s philosophy was that in order to achieve robust ignition, the burn-off trajectory should 

not only cross the Meldner curve, but it should travel as far up into the burn region and as far 

away from the Meldner curve as possible. Meldner reasoned that real world degradations would 

lower the trajectory of the burn-off calculation and as a precaution the burn-off calculation 

needed to extend as far as possible beyond the ignition threshold represented by the Meldner 

curve. 

 

Using this philosophy, which was popularized by Dick Doyas, both Meldner and Doyas would 

almost certainly reject the design for NIF Shot N110620 as being too marginal because the burn-

off trajectory does not cross the Meldner curve. Figure 3.4 justifies their conservatism. In figure 

3.4 once again the red curve is the trajectory of the clean one dimensional burn-off calculation, 

but the blue curve is the trajectory of a one dimensional calculation in which both burn and the 

KL turbulence mix model [Dimonte 2006] have been turned on. The details of the mix model are 

not very important here. Instead what is important is that shot N110620 is so marginal that 

almost any degradation such as those due to the turbulence model is sufficient to prevent the shot 

from igniting. This picture is consistent with reality because shot N110620 did not ignite. 

 

Even though Meldner didn’t do so, it is easy to turn Meldner’s ignition curve into an ignition 

criterion. We start by fitting the Meldner curve to a power law: 

 

 𝜌𝑅𝑇𝑛 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡         (3.1) 

 

If we take the log of equation (3.1) and rearrange we get: 

 

 𝑙𝑜𝑔(𝜌𝑅) = 𝑙𝑜𝑔(𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡) − 𝑛𝑙𝑜𝑔(𝑇)      (3.2) 

 

If we take the derivative of this expression we find: 

 

 𝑛 = − 
𝑑(𝑙𝑜𝑔(𝜌𝑅))

𝑑(𝑙𝑜𝑔(𝑇))
         (3.3) 

 

Figure 3.5 shows the results of performing this procedure numerically on the Meldner curve for a 

1mg bare DT sphere. The logarithmic derivative shows that there is no single temperature 

exponent which can match the Meldner curve over the entire temperature range. However for 

large temperatures (T > 6 KeV) which corresponds to small R (R < 1 gm/cm
2
) the exponent 

that works best is approximately n = 1. For lower temperatures (T < 6 KeV) which corresponds 

to large R (R > 1 gm/cm
2
) n = 2 is the exponent that works best. 
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A least squares power law fit to the 1mg Meldner curve is RT
1.62

 = 13.15. However a quadratic 

power law of RT
2
 = 16.71 is a pretty close approximation to the 1mg Meldner curve and is 

generally more convenient to use. This close match is displayed in figure 3.6. The red curve is 

the standard 1mg Meldner Curve. The blue curve is a plot of the equation RT
2
 = 16.71. The two 

𝑛
=

 −
𝑑

( 𝑙
𝑜
𝑔

( 𝜌
𝑅

) )

𝑑
( 𝑙
𝑜
𝑔

( 𝑇
) )

 

 

Tion 

Figure 3.5: The logarithmic derivative of the 1 mg Meldner Curve shows there 

is no single temperature exponent which can represent the Meldner Curve over 

the entire range of temperatures, but for large temperatures > 6 KeV (and hence 

small R < 1) the exponent n = 1 works best while for small temperatures < 6 

KeV (and hence R > 1) the exponent n = 2 works best. 

n = 2 

n = 1 

1 mg Meldner Curve 

RT
2
 = 16.71 
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T
io

n
 (

K
eV

) 

Figure 3.6: Simple fit to the Meldner curve. The red curve is the usual 1 mg 

Meldner curve. The blue curve is a plot of RT
2
 = 16.71. The two curves are not 

identical, but RT
2
 = 16.71 is a good approximation to the 1 mg Meldner curve. 

Burn Region 

RT
2
 > 16.71 

 

No-Burn Region 

RT
2
 < 16.71 
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curves are not identical but they are very close. Notice how the curve where RT
2
 = 16.71 

divides the R – Tion  plane into two distinct regions: The lower left area with RT
2
 < 16.71 

which is nearly identical to the no-burn region below the Meldner curve and the upper right area 

with RT
2
 > 16.71 which is nearly identical to the burn region above the Meldner curve.  

 

Figure 3.6 demonstrates that Meldner’s ignition criteria which required the burn-off trajectory of 

the hotspot in R – Tion space to cross over the Meldner curve to a very good approximation can 

be restated simply as the requirement that the maximum value of RT
2
 for the hot spot in a burn-

off calculation must exceed 16.71 gm-KeV
2
/cm

2
. Furthermore, Meldner’s assertion that the most 

robust ICF capsule will occur when the burn-off trajectory of the hot spot is as far above the 

Meldner curve as possible is the same as requiring the maximum value of RT
2
 in the hot spot be 

as large as possible. 

 

 
Figure 3.7 compares the numerically generated Meldner curves for bare DT spheres with the 

analytic expression derived in section II. The red curve in figure 3.7 is the Meldner curve for a 

bare DT sphere of 0.1 mg and the blue curve is the Meldner curve for a DT mass of 1.0 mg. The 

magenta curve is a plot of equation 2.28c in section II taken in the limit of no tamping. The 

analytic model does not exactly match either numerically generated ignition condition, but it 

comes close to matching the ignition boundary for the 0.1 mg bare DT sphere. Figure 3.7 is 

0.1 mg Meldner Curve 

mg Meldner Curve 

RT
2
 = 12.62/T

0.09
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Figure 3.7: Comparison of Meldner curves for DT masses of 0.1 and 1.0 mg with 

the analytic approximation of section II. The red curve is the Meldner curve for a 

bare DT mass of 0.1mg. The blue curve is the Meldner curve for a bare DT mass 

of 1.0 mg. The magenta curve is RT
2
 = 12.62/T

0.09
 which is the bare DT sphere 

limit of equation 2.28c in section II. The analytic model does not match either 

numerically generated Meldner curve, but comes close to matching the 0.1 mg 

ignition curve. 
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confirmation that Lawson’s ignition hypothesis (equation 2.1 in section II) and the 

approximation that the confinement time is just the speed of sound transit time across the hotspot 

(equation 2.21) are reasonably accurate assumptions at least in the case of the bare DT sphere 

because the analytic model and the numerical models are in general agreement. 

 

Note that Meldner’s calculations of bare DT spheres made no attempt to account for the 

hydrodynamic tamping of the cold DT fuel which should be present in a healthy ignition capsule. 

The effect of tamping is significant. This is the reason why a clean calculation of NIF shot 

N110620 was able to ignite even though the no-burn trajectory never crossed the Meldner curve.  

 

However in defense of Meldner, I don’t think he left out tamping out of ignorance. Instead he 

wanted to be cautious. If the burn-off trajectory of an ICF hot spot crossed over the Meldner 

curve which ignored tamping, then in reality the hotspot would have some extra margin which is 

usually a good thing. That extra margin would make the design more robust against all of the 

various degradation mechanisms that have been imagined and perhaps some that haven’t been 

imagined. 

 

On the other side of the argument, in order for a NIF design to achieve a maximum burn-off 

value for RT
2
 of 16.71 gm-KeV

2
/cm

2
, the implosion velocity must be very high – approaching 

400 km/sec. NIF implosions reaching those speeds demand very high accelerations and also 

require that almost all of the ablator be burned off leading to a very high risk of failure due to 

Rayleigh-Taylor instabilities at the ablation front. 

 

Meldner Curves with Tamping 

 

Meldner’s bare DT sphere problem can be generalized by surrounding the hotspot with a 

spherical layer of cold DT ice. Recall that it takes three numbers to describe a bare DT sphere: 

the initial areal density, R, initial temperature, T, and the mass. In the generalization proposed 

here, Meldner’s bare sphere will become the hotspot and so we will still need a triplet of 

numbers to describe the initial state of the hotspot, however we will need another set of three 

numbers to describe the cold shell of DT ice. This second triplet could be the initial pressure, the 

initial density and the mass of the cold shell. Of these three numbers, the pressure can be 

eliminated, because for hotspot ignition, the hotspot and cold shell are nearly in pressure 

equilibrium just before ignition. Hotspot ignition is sometimes known as isobaric ignition for this 

reason as opposed to the isochoric case appropriate for fast ignition. 

 

So once the R, temperature and mass of the hotspot are given, the pressure of the hotspot is 

fixed and we will assume that the cold shell is initialized with the very same pressure. That still 

leaves two new degrees of freedom: the density of the shell and the mass of the shell, which are 

combined with the three numbers used to describe the initial state of the hotspot for a total of five 
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numbers to describe the initial state of any calculation. It is convenient to rearrange these five 

numbers a little bit so that our final parameter list for the specification of the generalized 

Meldner problem is:  

 

1) The initial areal density of the hotspot – R. 

2) The initial temperature of the hotspot – T. 

3) The total mass of both hotspot and cold shell – MDT. 

4) The mass fraction of the hotspot – Mf. 

5) The ratio of the cold shell pressure to the degeneracy pressure – . 

 

 

 
 

Given these 5 parameters, the procedure for establishing the initial conditions for the hotspot and 

cold shell are listed below: 

 

1) Find the mass of the hotspot – 𝑀𝐻𝑆 = 𝑀𝑓𝑀𝐷𝑇. 

2) Find the radius of the hotspot – 𝑅𝐻𝑆 = √3𝑀𝐻𝑆/(4𝜋𝜌𝑅). 

3) Find the density of the hotspot – 𝜌𝐻𝑆 = 𝜌𝑅/𝑅𝐻𝑆. 

4) Find the pressure of the hotspot – 𝑃𝐻𝑆 = 2𝑁0𝐾𝐵𝜌𝐻𝑆𝑇/𝐴𝐷𝑇. 

5) Find the pressure of the cold fuel – 𝑃𝐶𝐹 = 𝑃𝐻𝑆. 

6) Find the degeneracy pressure in the cold fuel – 𝑃𝐹𝑒𝑟𝑚𝑖 = 𝑃𝐶𝐹/𝛼. 

7) Find the density of the cold fuel – 𝜌𝐶𝐹 = [
𝑃𝐹𝑒𝑟𝑚𝑖

2.1576
]

3/5

. 

8) Find the temperature of the cold fuel – 𝑇𝐶𝐹 = {𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐸𝑂𝑆 𝑙𝑜𝑜𝑘𝑢𝑝}(𝜌𝐶𝐹, 𝑃𝐶𝐹). 

9) Find the mass of the cold fuel – 𝑀𝐶𝐹 = (1 − 𝑀𝑓)𝑀𝐷𝑇. 

10) Find the outer radius of the cold fuel – 𝑅𝐶𝐹 = [𝑅𝐻𝑆
3 + 3𝑀𝐶𝐹/(4𝜋𝜌𝐶𝐹)]1/3. 

 

Finding the boundary which separates the region that ignites from the region that fails to ignite in 

a five dimensional space is a daunting task and somewhat difficult to visualize. However after a 

few initial calculations it quickly became apparent that the ignition surface is extremely 

insensitive to the total DT mass. This is analogous to Meldner’s earlier hypothesis that the 

Hotspot Parameters 

HS 

T 

R 

MHS 

RHS 

PHS 

 

Cold Fuel Parameters 

CF 

TCF 

MCF 

RCF 

PCF 



PFermi 

 

Figure 3.8: Initial conditions for generalized Meldner calculations. 
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ignition curve is insensitive to the total mass of the bare DT sphere only in these tamped 

calculations this approximation is even more accurate. However tamped calculations also 

demonstrate that the ignition surface does depend on the mass fraction of the hotspot. 

Calculations also indicate that the ignition boundary is very insensitive to the degeneracy 

parameter . This means that we only have to search a three dimensional space (R,T,Mf)  for 

the ignition surface rather than a five dimensional space (R,T,Mf,MDT,)  . 

 

Once the total mass, MDT, the degeneracy ratio, , and the hotspot mass fraction, Mf, are 

selected, the problem is reduced to finding the ignition curve in the plane of initial temperature 

and areal density much like Meldner’s original work. Figure 3.9 shows 7 ignition curves for a 

range of hotspot mass fractions given a total DT mass of 0.200 milligrams and a degeneracy ratio 

of  = 2.0. Once again CALEICF was used in one dimension with all relevant physics turned on 

to perform the calculations and once again a calculation was scored as ignited if the specific 

yield of the hotspot exceeded 10 MJ/mg. Note that a hotspot mass fraction of 1.00 means that all 

of the mass is in the hotspot and the mass of the cold fuel is zero. Such a situation corresponds to 

Meldner’s bare DT mass of 0.200 mg. 

 

 
It may not be obvious, but a close examination of figure 3.9 reveals that 1 − 𝑀𝑓  tracks the degree 

of inertial tamping due to the cold fuel. Obviously with a hotspot mass fraction of 1, or 1 −

𝑀𝑓 = 0, there is no cold fuel and therefore no tamping. As the hotspot mass fraction decreases, 

there is relatively more cold fuel mass compared to the hotspot mass and the degree of inertial 
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Figure 3.9: Tamped ignition curves for MDT = 0.200 mg,  = 2.0 and hotspot mass 

fractions, Mf, of 0.02, 0.05, 0.10, 0.15, 0.20, 0.50 and 1.00. Note that a hotspot 

fraction of 1.00 corresponds to one of Meldner’s bare DT mass ignition curves.  
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tamping increases which causes the ignition curves in figure 3.8 to slide progressively downward 

to lower temperatures as the hotspot mass fraction gets smaller. 

 

One might look at figure 3.9 and take away the conclusion that a good strategy for an ICF design 

would be to make the hotspot mass fraction as small as possible because then the required 

ignition temperature could be made rather low. However, one reason the small hotspot mass 

fraction calculates to ignite so easily is because it takes a lot of spherical convergence to get a 

small hotspot mass up to the R’s needed for ignition. For the 2% mass fraction ignition curve in 

figure 3.9, the radius of the hotspot with a R of 0.5 gm/cm
2
 is only 13.8 microns. When the R 

gets to 1.0 gm/cm
2
, the hotspot radius needed is 9.8 microns. Both of these radii represent huge 

convergence ratios of 80 and 112 respectively. Such extreme convergence ratios would be very 

hard to achieve in reality. 

 

 

 
Figure 3.10 shows the effect of different degeneracy ratios. Both figures 3.10a and 3.10b plot 6 

different ignition curves but in figure 3.10a only 3 curves are visible. This is because the  = 2.0 

curves and the  = 1.5 curves are so close to each other that they are nearly indistinguishable. 

Figure 3.10b shows a blowup of the same 6 curves and it is just possible to see the separation 
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Figure 3.10: Six ignition curves for MDT = 0.200 mg. The 6 cases are (1)  = 2.0, 

Mf = 0.05; (2)  = 2.0, Mf = 0.10; (3)  = 2.0, Mf = 0.15; (4)  = 1.5, Mf = 0.05; (5) 

 = 1.5, Mf = 0.10 and (6)  = 1.5, Mf = 0.15. Figure 3.9a shows the ignition curves 

over their full range of R and temperature where the  = 2.0 curves and the  = 1.5 

curves appear to overlay each other. Figure 3.9b shows the ignition curves over a 

restricted range of R and temperature and the slight sensitivity to  is just visible. 
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between  = 1.5 and  = 2.0 for the Mf = 0.05 and Mf = 0.10 cases but the curves for the Mf = 

0.15 are still on top of each other. The main point to take away from figure 3.10 is that the 

ignition curves of these tamped hotspot calculations are largely insensitive to the pressure 

degeneracy ratio . 

 

Figure 3.11 shows the ignition curves for 3 different values of the total DT mass. All 3 cases 

have the same value of the degeneracy ratio,  = 2.0, and the hotspot mass fraction Mf = 0.10. 

There is a small visible difference between the three ignition curves but the difference is very 

small – much smaller than the difference in ignition curves seen for the bare DT sphere case in 

figure 3.2. The main point of figure 3.11 is that the ignition surface is nearly insensitive to the 

total mass of the DT fuel. 

 

 
 

Let us return to the ignition curves in figure 3.9. Is there a simple analytic form that accurately 

summarizes the numerically generated curves in figure 3.9? It’s easy to fit each curve 

individually to a simple power law of the form RT
n
 = C. Table 3.1 lists the results of 

performing a least squares fit for each of the curves in figure 3.9. 
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Figure 3.11: Ignition curves for 3 different DT masses: (1) MDT = 0.200 mg,  = 

2.0, Mf = 0.10; (2) MDT = 0.300 mg,  = 2.0, Mf = 0.10 and (3) MDT = 0.400 mg,  

= 2.0, Mf = 0.10. Ignition curves depend on hotspot fraction, but are insensitive to 

total DT mass. 
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Table 3.1: Power Law Fits for each Curve 

Hotspot Mass Fraction Mf Fit 

Mf = 0.02 𝜌𝑅𝑇1.9753 = 4.7346 

Mf = 0.05 𝜌𝑅𝑇2.0281 = 6.0794 

Mf = 0.10 𝜌𝑅𝑇1.9547 = 6.7531 

Mf = 0.15 𝜌𝑅𝑇1.8658 = 6.9026 

Mf = 0.20 𝜌𝑅𝑇1.7877 = 6.9102 

Mf = 0.50 𝜌𝑅𝑇1.5139 = 6.8676 

Mf = 1.00 𝜌𝑅𝑇1.2208 = 5.6305 

 

 

Each of these individual fits matches their respective curves with small fitting errors. Note that 

the exponents of these fits smoothly vary from around 2 for small hotspot mass fractions to 1.22 

for a mass fraction of 1. The constants, C, also vary in a systematic way with respect to the mass 

fraction. One could try to fit both the sequence of exponents and constants as a function of the 

hotspot mass fraction. However such an arrangement would be cumbersome. It is more 

convenient to look for an overall fit in which the temperature exponent is the same for all mass 

fractions. To this end we will search for a fit for all ignition curves of the following form: 

 

 𝜌𝑅𝑇𝑛 = 𝐴𝑀𝑓
𝑃          (3.4) 

 

Taking the logarithm of equation 3.4 produces an expression in which all of the free parameters 

appear in a linear relationship. 

 

 𝑛𝑙𝑜𝑔(𝑇) + 𝑙𝑜𝑔(𝜌𝑅) = 𝑃𝑙𝑜𝑔(𝑀𝑓) + 𝑙𝑜𝑔(𝐴)      (3.5) 

 

Equation 3.5 was fit to the data in figure 3.9 by finding the least squared residual error. However 

the quality of the fit wasn’t very good particularly for mass fractions less than 0.20 which is the 

area of greatest interest for NIF ignition designs. A second least squares fit of equation 3.5 was 

made to the numerical ignition curves in figure 3.9, the difference being that this second fit was 

restricted to the ignition curves with mass fractions less than or equal to 0.20. The resulting least 

squares fit is listed below: 

 

 𝜌𝑅𝑇1.9 = 12.068𝑀𝑓
0.2689  RMS error 2.7%    (3.6) 

 

The RMS error for this fit was very good at 2.7%. 
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The exponent which minimizes the RMS error is 1.9 which is very close to 2.0. Since a lot of 

work had already been with the ignition parameter RT
2
, a third least squares fit was performed 

in which the temperature exponent was fixed at 2.0. The resulting fit was: 

 

 𝜌𝑅𝑇2.0 = 14.2478𝑀𝑓
0.2831  RMS error 3.4%    (3.7) 

 

The RMS error for this n = 2 fit was only slightly greater at 3.4% than the error for the n = 1.9 fit 

which had an error of 2.7%. Notice that if we set Mf to 1.0 in equation 3.7, we get an estimate of 

the ignition curve for a bare sphere which is: 

 

 𝜌𝑅𝑇2.0 = 14.2478         (3.8) 

 

Compare equation 3.8 above with the fit to the Meldner curve found earlier in this section. 

Figure 3.6 shows that a good approximation to the 1mg Meldner curve is: 

 

  𝜌𝑅𝑇2 = 16.71         (3.9) 

 

We can compare both of these ignition curves to equation 2.28c in section II taken in the limit of 

no tamping and an equimolar fuel: 

 

 𝜌𝑅𝑇2 = 12.62/𝑇0.09         (3.10) 
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Figure 3.12: Comparison between the numerical ignition curves (in red) and the fits 

generated by equation 3.7 (in blue). The numerical curves all have a total DT mass 

of 0.200 mg and degeneracy pressure ratio of  = 2.0. The match is not perfect but 

good enough to show that equation 3.7 is a useful approximation. 

Mf = 0.20 

Mf = 0.10 

Mf = 0.05 

Mf = 0.02 

 

Numerical Ignition Curves 

Fitted Ignition Curves from eq 3.7 
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Thus we see that the analytic approximations made in section II and the numerical results of 

section III are largely in agreement at least in the untamped limit of a bare DT sphere. 

 

The more interesting question is how well does equation 3.7 fit the numerical results in the more 

realistic case of a tamped hotspot. Figure 3.12 compares the numerical ignition curves with the 

fits coming from equation 3.7. The agreement isn’t perfect but it’s still very good. The main 

point of this comparison is to show that equation 3.7 is an accurate representation of the 

numerically generated ignition threshold for the RT
2
 ignition criterion. 

 

 

 
 

The final question of this section is how well does the analytic ignition condition found in 

section II and represented by equation 2.28 match with the numerical results found in this 

section? Recall that equation 2.28 comes in two forms: equation 2.28b which expresses the 

ignition threshold in terms of the thermonuclear reaction rates <v> which have to be looked up 

in a table: 

 

 𝜌𝑅𝑇2 > 5.06115 × 10−19 𝑇3.5

〈𝜎𝑣〉
{

1

1+
ρ𝑐Δ𝑅

𝜌𝑅
√

𝜌

𝜌𝑐

} [
√0.8𝜒𝐷+1.2𝜒𝑇

4𝜒𝐷𝜒𝑇
]    (2.28b) 
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Figure 3.13: Comparison between the numerical ignition curves (in red) and the 

analytic model in equation 2.28b (in blue). The numerical curves all have a total DT 

mass of 0.200 mg and degeneracy pressure ratio of  = 2.0. The match is not is as 

good as the fit expressed in equation 3.7 and plotted in figure 3.12 

Mf = 0.20 

Mf = 0.10 

Mf = 0.05 

Mf = 0.02 

 

Numerical Ignition Curves 

Analytic Ignition Curves from eq 2.28b 
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and equation 2.28c which replaces <v> with a power law approximation to give a closed-form 

expression for the ignition condition: 

 

 𝜌𝑅𝑇2 >
12.6172

𝑇0.09 {
1

1+
ρ𝑐Δ𝑅

𝜌𝑅
√

𝜌

𝜌𝑐

} [
√0.8𝜒𝐷+1.2𝜒𝑇

4𝜒𝐷𝜒𝑇
]      (2.28c) 

 

Figure 3.13 plots the numerical ignition condition found by solving the generalized Meldner 

problem for four different hotspot mass fractions against the ignition condition implied by 

equation 2.28b. Figure 3.14 plots the numerical ignition condition against those implied by 

equation 2.28c. 

 

 

 
 

There isn’t any question that the ignition conditions found by numerical simulations are in some 

sense the right answer. Yes we have made many simplifying assumptions such as spherical 

symmetry and uniform spatial conditions within the hotspot and cold fuel but beyond those 

simplifications which actually define the problem no addition approximations of any significance 

have been made. The analytic ignition condition expressed by equation 2.28b is based upon the 

starting assumption of Lawson expressed in equation 2.1 which assumes that ignition will occur 

when the thermonuclear heating rate exceeds a critical rate related to the speed of sound transit 

time across the cold fuel and hotspot. Those are assumptions which are only approximately true. 
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Figure 3.14: Comparison between the numerical ignition curves (in red) and the 

analytic model in equation 2.28c (in blue). The numerical curves all have a total DT 

mass of 0.200 mg and degeneracy pressure ratio of  = 2.0. The match is not is as 

good as the fit expressed in equation 3.7 and plotted in figure 3.12 

Mf = 0.20 

Mf = 0.10 

Mf = 0.05 

Mf = 0.02 

 

Numerical Ignition Curves 

Analytic Ignition Curves from eq 2.28c 
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The discrepancies between the red and blue curves in figures 3.13 and 3.14 illustrate the quality 

of those assumptions.  

 

Figure 3.13 compares the numerical ignition conditions with equation 2.28b which should be 

more accurate than equation 2.28c because no approximation is made for the thermonuclear 

rates. There is a rough correspondence between the numerical and analytic ignition curves 

particularly for the lower hotspot R’s. However sizable discrepancies exist for larger hotspot 

R’s. This suggests that Lawson’s fundamental assumption about ignition expressed in equation 

2.1 is a good assumption for low R and not so good at larger R’s.   

 

Figure 3.14 compares the numerical ignition conditions with equation 2.28c which should be less 

accurate than equation 2.28b because the tabular TN reaction rates have been replaced with a 

power law approximation. At first glance the analytic curves in figure 3.14 appear somewhat 

better matched to the numerical curves than what we saw in figure 3.13. This is misleading. 

Figure 3.14 looks better because of compensating errors. The details of the power law fit for the 

TN reaction rates were intentionally chosen so that the temperature exponent in the ignition 

condition would be close to 2. This was done with full knowledge that an exponent of 2 would 

give a decent match to the numerical results. By choosing an imperfect fit to the TN rates, we 

have partially balanced the error of the fit to the TN rates against the errors in Lawson’s principal 

assumption.  

 

The analytic ignition condition embodied in equation 2.28 is attractive because it is so easily 

derived, but the fit to the solution to the generalized Meldner found in equation 3.7 is both easier 

to use (because you don’t need to find the density ratio or the areal density ratio of the hotspot to 

cold fuel) and equation 3.7 is ultimately more accurate because it is a good fit to numerical 

simulations which solve the ignition problem without invoking Lawson’s principal hypothesis. 
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IV. Experimental Measurement of Ignition Parameters 

 

It is possible to infer the values of the ignition figures-of-merit directly from the data taken on a 

NIF shot without resorting to code simulations. The methodology adopted in this section was 

first proposed by Paul Springer and Charlie Cerjan [Springer 2011]. The fundamental 

assumption is that the yield of the capsule can be expressed as a function of the basic properties 

of the hotspot. 

 

 𝑌𝑛 = 𝑛𝑖𝑜𝑛
2 𝜒𝐷𝜒𝑇〈𝜎𝑣(𝑇)〉𝜏

4𝜋

3
𝑅𝐻𝑆

3        (4.1) 

 

Yn is the D+T neutron yield of the shot. The average ion number density of the hot spot is n ion. 

The symbols D and T are the deuterium and tritium atom fractions which are usually set to 0.5. 

The Maxwell averaged thermonuclear cross section multiplied by the ion velocity for the DT 

reaction at temperature T is <v>. The burn duration is  and the hot spot radius is RHS. All of 

these values can be measured directly except for the average ion number density.  

 

The average temperature, T, of the hot spot is inferred from the neutron time-of-flight (NTOF) 

spreading. The burn duration, , is taken to be the full-width half-maximum of the thermonuclear 

gamma reaction history signal. The radius of the hot spot, RHS, is taken to be the P0 component 

of the 17% contour of the neutron pin-hole image and of course the neutron yield, Yn, is taken 

from the neutron detectors. 

 

Equation 4.1 above can be inverted to solve for the ion number density: 

 

 𝑛𝑖𝑜𝑛 = √
3𝑌𝑛

4𝜋𝜒𝐷𝜒𝑇〈𝜎𝑣(𝑇)〉𝜏𝑅𝐻𝑆
3         (4.2) 

 

Equation 4.2 expresses the ion number density in terms experimentally accessible quantities. 

With this expression for the number density we can get to the other quantities of interest. 

 

First we find an expression for RT
2
: 

 

 𝜌𝑅𝑇2 = 𝑆𝑐𝑎𝑙𝑒 (
𝐴𝑛𝑖𝑜𝑛

𝑁0
) 𝑇2𝑅𝐻𝑆 =

𝐴

𝑁0
√

3

4𝜋𝜒𝐷𝜒𝑇
√

𝑌𝑛

𝜏𝑅𝐻𝑆
(

𝑇2

√〈𝜎𝑣〉
)    (4.3a) 

 𝜌𝑅𝑇2 = 4.081181 × 10−10𝑆𝑐𝑎𝑙𝑒√
𝑌𝑛(1015)

𝜏(𝑛𝑠)𝑅𝐻𝑆(𝜇𝑚)
(

𝑇2

√〈𝜎𝑣(𝑇)〉
)    (4.3b) 

 

In the last expression, RT
2
 has units of gm-KeV

2
/cm

2
. Yn has units of 10

15
 neutrons,  has units 

of nanoseconds and RHS has units of microns, T has units of kilovolts and <v> is in units of 

cm
3
/seconds. A = 2.515076 is the average atomic mass of the D+T mixture. N0 is Avogadro’s 
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number. Lastly we have assumed D = T = 0.5. The scale factor – Scale – will be determined 

shortly such that the experimental values of RT
2
 will closely conform to the edit of RT

2
 taken 

from our ICF codes. 

 

Recall that for temperatures between 3 and 4.2 kilovolts, the Maxwell averaged reaction rate for 

the D+T reaction can be approximated as: 

 

 〈𝜎𝑣〉(cm3/sec)  = 2.216 × 10−20𝑇4.01 with T in KeV    (4.4) 

 

Inserting equation 4.4 into 4.3b gives: 

 

 𝜌𝑅𝑇2 = 2.741 𝑆𝑐𝑎𝑙𝑒√
𝑌𝑛(1015)

𝜏(𝑛𝑠)𝑅𝐻𝑆(𝜇𝑚)
𝑇−0.005      (4.5) 

 

Equation 4.3b should be good for any hot spot temperature, whereas equation 4.5 should only be 

used for neutron time-of-flight temperatures between 3 and 4.2 kilovolts. Either expression can 

be used to take the experimental values for Yn, , RHS and T and turn them into an inferred value 

for RT
2
.  

 

Notice in the temperature range between and 3 and 4.2 kilovolts, the experimentally inferred 

value for RT
2
 loses almost all dependence on temperature. This is because <v> is nearly 

proportional to T
4
 and the square root of that cancels the T

2
 in the numerator. 

 

Historically RT
2
 along with R and RT has been edited by ICF codes by performing line 

integrals along a radial line: 

 

 𝜌𝑅 =  ∫ 𝜌𝐷𝑇𝑑𝑟         (4.6a) 

 𝜌𝑅𝑇 =  ∫ 𝜌𝐷𝑇𝑇𝑑𝑟         (4.6b) 

 𝜌𝑅𝑇2 =  ∫ 𝜌𝐷𝑇𝑇2𝑑𝑟         (4.6c) 

 

Each of the integrals cover the entire range of radii, but the density in the integrand is limited to 

the partial density of deuterium plus the partial density of tritium so the three integrals are 

associated with the entire compliment of thermonuclear fuel in the capsule and not limited to 

either the hot spot fuel or the cold fuel ice. Note that in those calculations in which the ablator 

material is allowed to mix with the DT fuel, the partial density of the ablator is specifically 

excluded from the definitions listed in equations 4.6a, 4.6b and 4.6c. In discussions referring to 

RT
2
 as an ignition parameter the actual value used is the maximum in time of the instantaneous 

integral defined by equation 4.6c, in a calculation in which thermonuclear reactions have been 

turned off or the alpha energy depositions have been disabled.  
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These definitions for R, RT and RT
2
 may be extended to two or three dimensions by taking 

the line integrals described in equations 4.6a, 4.6b and 4.6c along radial lines in many different 

directions and then forming an average where each radial integral is weighted by the appropriate 

solid angle fraction. 

 

The question naturally arises, how does the code’s internal edit of RT
2
 compare with the 

inferred value represented by equation 4.3b or 4.5? What value for the Scale factor in equations 

4.3 and 4.5 will give the best match to the RT
2
 edit of an ICF code? To this end a series of 

simulations were performed of an ICF capsule which is similar, but not identical to the Revision 

5 design tested at the National Ignition Facility (NIF). This is the same ICF design and the same 

series of calculations featured in section V. The design has an ablator made of plastic (CH) and 

doped with silicon.  

 

In the series of calculations using this CH capsule, the temperatures of the foot along with the 

temperatures of the second, third and main pulses were randomly varied both up and down. The 

thermonuclear reactions were turned on but the resulting neutrons and alpha particles were not 

permitted to deposit any energy back into the plasma. Such simulations are usually known as no-

alpha calculations. As we will see in section V, some of the variations in drive are severe enough 

to prevent the capsule from igniting even if the alpha energy had been deposited. Yet other drive 

variations are mild enough that the capsule would ignite. Thus we expect the range of RT
2
 

values to cover the region of the ignition threshold.  

 

For each variation of the drive, the code’s internal edit of RT
2
 (the maximum in time of 

equation 4.6c) was recorded along with the experimentally inferred value (equation 4.3b with 

Scale = 1). The results are plotted in figure 4.1. Notice that to a high degree of accuracy the two 

versions of RT
2
 are proportional to one another. A linear least squares fit of the points in figure 

4.1 shows that the code’s RT
2
 is approximately 1.3174 times the measurement inferred by 

equation 4.3b. The RMS error of this simple fit is 0.9% and the maximum error is 3.7%.  

 

Several different NIF designs have studied in this manner and the least squares fit between the 

code’s version of RT
2
 using the maximum of equation 4.6c and the experimentally inferred 

RT
2
 using equation 4.3b with alpha depositions off always result in a coefficient of 

proportionality between 1.28 and 1.32. Therefore it is convenient to define the experimentally 

inferred value for RT
2
 with a scale factor of 1.3 in equations 4.3 and 4.5: 

 

 𝜌𝑅𝑇2 = 1.3 × (
𝐴𝑛𝑖𝑜𝑛

𝑁0
) 𝑇2𝑅𝐻𝑆 =

𝐴

𝑁0
√

3

4𝜋𝜒𝐷𝜒𝑇
√

𝑌𝑛

𝜏𝑅𝐻𝑆
(

𝑇2

√〈𝜎𝑣〉
)    (4.7a) 

 𝜌𝑅𝑇2 = 1.3 × 4.081181 × 10−10√
𝑌𝑛(1015)

𝜏(𝑛𝑠)𝑅𝐻𝑆(𝜇𝑚)
(

𝑇2

√〈𝜎𝑣(𝑇)〉
)    (4.7b) 



30 
 

 𝜌𝑅𝑇2 = 1.3 × 2.741√
𝑌𝑛(1015)

𝜏(𝑛𝑠)𝑅𝐻𝑆(𝜇𝑚)
𝑇−0.005      (4.7c) 

 

In future sections of this report, when reference is made to the experimentally inferred values of 

RT
2
, the scale factor of 1.3 will be included in the definition used for RT

2
. 

 

 

In order to use RT
2
 as part of an ignition criterion, we will also need an expression for the mass 

of the hotspot: 

 

 𝑀𝐻𝑆 =
4𝜋

3
𝑅𝐻𝑆

3 𝜌𝐻𝑆 =
4𝐴

𝑁0
√

𝜋

3
√

𝑌𝑛𝑅𝐻𝑆
3

𝜏<𝜎𝑣>
       (4.8a) 

 𝑀𝐻𝑆(𝜇𝑔) = 1.7095 × 10−11√
𝑌𝑛(1015)𝑅𝐻𝑆

3 (𝜇𝑚)

𝜏(𝑛𝑠)<𝜎𝑣>(𝑐𝑚3/𝑠𝑒𝑐)
     (4.8b) 

 

In equation 4.8b the mass of the hotspot is in micrograms, Yn is divided by 10
15

, RHS has units of 

microns,  has units of nanoseconds and <v> has units of cm
3
/sec. Substituting the power law 

fit to the TN reactions of equation 4.4 into equation 4.8b gives an approximate form for the mass 

of the hotspot: 

Measured RT2 (Eq 4.3b) 

M
ax

(
R

T
2
) 

fr
o
m

 C
o
d

e 

Figure 4.1: The blue diamonds compare the experimentally inferred RT
2
 using 

equation 4.3b and RT
2
 taken directly from the code run (the max of eq. 4.6c). 

The line is a least squares fit with a slope of 1.3174. The RMS error of the linear 

fit is 0.9%. The largest error is 3.7%. 



31 
 

 

 𝑀𝐻𝑆(𝜇𝑔) =
0.11484

𝑇2.005
√

𝑌𝑛(1015)𝑅𝐻𝑆
3 (𝜇𝑚)

𝜏(𝑛𝑠)
       (4.8c) 

 

We can combine the expression for RT
2
 in equation 4.7b or 4.7c with the ignition threshold we 

found from solving the generalized Meldner problem in section III (equation 3.7) to form the  

ignition parameter: 

 

 𝛽 =
𝜌𝑅𝑇2

14.2478𝑀𝑓
0.2831 = 3.72372 × 10−11√

𝑌𝑛(1015)

𝜏(𝑛𝑠)𝑅𝐻𝑆(𝜇𝑚)
(

𝑇2

√〈𝜎𝑣(𝑇)〉
) 𝑀𝑓

−0.2831  (4.9a) 

 𝛽 = 0.2501√
𝑌𝑛(1015)

𝜏(𝑛𝑠)𝑅𝐻𝑆(𝜇𝑚)
𝑇−0.005𝑀𝑓

−0.2831      (4.9b) 

 

Mf is the hotspot mass fraction which is given by: 

 

 𝑀𝑓 =
1.7095×10−11

𝑀𝐷𝑇 𝑇𝑜𝑡(𝜇𝑔)
√

𝑌𝑛(1015)𝑅𝐻𝑆
3 (𝜇𝑚)

𝜏(𝑛𝑠)<𝜎𝑣>(𝑐𝑚3/𝑠𝑒𝑐)
      (4.10a) 

 

 𝑀𝑓 =
8.0602×10−3

𝑀𝐷𝑇 𝑇𝑜𝑡(𝜇𝑔)𝑇2.005
√

𝑌𝑛(1015)𝑅𝐻𝑆
3 (𝜇𝑚)

𝜏(𝑛𝑠)
      (4.10b) 

 

The  ignition parameter has been properly normalized so that the probability of ignition should 

be very high whenever  > 1. 

 

Springer and Cerjan’s original goal was to produce an expression which would infer the hot spot 

pressure. This is easy to do starting with equation 4.2 for the ion number density. The hot spot 

pressure is then: 

 

 𝑃𝐻𝑆 = 2𝐾𝐵𝑛𝑖𝑜𝑛𝑇         (4.11) 

 

We have assumed that both the electrons and the ions are in thermal equilibrium with the same 

temperature T. Substitution of equation 4.2 into 4.11 gives us our expression for the hot spot 

pressure: 

 

 𝑃𝐻𝑆 = 2𝐾𝐵√
3

4𝜋𝜒𝐷𝜒𝑇
√

𝑌𝑛

𝜏𝑅𝐻𝑆
3

𝑇

√〈𝜎𝑣(𝑇)〉
       (4.12a) 

 𝑃𝐻𝑆(𝐺𝐵) = 3.131 × 10−6√
𝑌𝑛(1015)

𝜏(𝑛𝑠)𝑅𝐻𝑆
3 (𝜇𝑚)

𝑇

√〈𝜎𝑣(𝑇)〉
     (4.12b) 

 

Inserting equation 4.4 into equation 4.12b gives: 
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 𝑃𝐻𝑆(𝐺𝐵) = 2.103 × 104√
𝑌𝑛(1015)

𝜏(𝑛𝑠)𝑅𝐻𝑆
3 (𝜇𝑚)

𝑇−1.005     (4.12c) 

 

Equation 4.12c differs slightly from Springer and Cerjan’s results which is reproduced here: 

 

 𝑃𝐻𝑆(𝐺𝐵) = 2.334 × 104√
𝑌𝑛(1015)

𝜏(𝑛𝑠)𝑅𝐻𝑆
3 (𝜇𝑚)

𝑇−1.0     (4.12d) 

 

The most likely reason for this small discrepancy is that Springer and Cerjan used a slightly 

different fit for <v(T)>. Equation 4.4 represents a least squares fit of the <v> data used in our 

ICF codes over the range of 3 to 4.2 KeV. Within the specified temperature range, equation 4.4 

will give the closest match to the table lookup data used by our ICF codes. 

 

Again it is trivial to take the hot spot pressure in equation 4.12 and multiply it by the burn 

duration to get an expression for P. 

 

 𝑃𝜏                 = 2𝐾𝐵√
3

4𝜋𝜒𝐷𝜒𝑇
√

𝑌𝑛𝜏

𝑅𝐻𝑆
3

𝑇

√〈𝜎𝑣(𝑇)〉
      (4.13a) 

 𝑃𝜏(𝐺𝐵 ∙ 𝑛𝑠) = 3.131 × 10−6√
𝑌𝑛(1015)𝜏(𝑛𝑠)

𝑅𝐻𝑆
3 (𝜇𝑚)

𝑇

√〈𝜎𝑣(𝑇)〉
     (4.13b) 

 𝑃𝜏(𝐺𝐵 ∙ 𝑛𝑠) = 2.103 × 104√
𝑌𝑛(1015)𝜏(𝑛𝑠)

𝑅𝐻𝑆
3 (𝜇𝑚)

𝑇−1.005     (4.13c) 

 

The expression for P above can be combined with the expression derived in section II for the 

ignition value of (𝑃𝜏)𝑖𝑔 found in equation 2.8 to produce an experimentally inferred value for 

Ricardo Betti’s . 

 

 𝜒 =
𝑃𝜏

(𝑃𝜏)𝑖𝑔
=

𝑇𝛼

12
√

3

𝜋
√

𝑌𝑛𝜏

𝑅𝐻𝑆
3 (

√𝜎𝑣

𝑇
) [√4𝜒𝐷𝜒𝑇]      (4.14a) 

 𝜒 = 2.883 × 1011√
𝑌𝑛(1015)𝜏(𝑛𝑠)

𝑅𝐻𝑆
3 (𝜇𝑚)

(
√𝜎𝑣

𝑇
) [√4𝜒𝐷𝜒𝑇]     (4.14b) 

 𝜒 = 42.92√
𝑌𝑛(1015)𝜏(𝑛𝑠)

𝑅𝐻𝑆
3 (𝜇𝑚)

𝑇1.005[√4𝜒𝐷𝜒𝑇]      (4.14c) 

 

Recall that T = 3541 KeV is the energy of the D+T alpha particle. The square root in the square 

brackets is the correction factor for the DT fuel composition. It reverts to unity in the case of an 

equimolar mixture. Equation 4.14c has used the power law fit for <v> found in equation 4.4. 

Just as in the case of ,  the probability of ignition should be very high whenever  > 1. 
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We can use the same set of approximations to construct a measurement of the  ignition 

parameter developed in section II as an elaboration of the Larson-Slone ignition figure-of-merit. 

The definition of the  ignition parameter is given by equation 2.17a – reproduced here with 

slightly different notation. 

 

 𝜂 =
𝑌𝛼

𝐸𝑀𝑎𝑥 
>  1          (4.15) 

 

Y is the total energy of all of the 3.5 MeV alpha particles produced in a calculation in which the 

alpha particles are produced but not allowed to deposit their energy into the DT. Emax is the 

maximum in time of the hotspot thermal energy in a calculation in which the alpha particles are 

not allowed to deposit any energy into the DT plasma. 

 

It is easy to relate the total alpha yield to the measured neutron yield – Yn: 

 

 𝑌𝛼 = 𝑌𝑛𝐾𝐵𝑇𝛼          (4.16) 

 

Recall that KB = 1.60217657x10
-9

 is the Boltzmann constant that converts temperature in KeV 

into energy in ergs. T = 3541 is the energy of the thermonuclear alpha particle in KeV. The total 

thermal energy of the hotspot is also easy to express as: 

 

 𝐸𝑚𝑎𝑥 =
4𝜋

3
𝑅𝐻𝑆

3 (2
3

2
𝑛𝐾𝐵𝑇)        (4.17) 

 

We can use equation 4.2 to express the average atom density of the hotspot in terms of measured 

quantities.  

 

 𝐸𝑚𝑎𝑥 = 4√3𝜋√
𝑌𝑛𝑅𝐻𝑆

3

𝜏〈𝜎𝑣〉
𝐾𝐵𝑇        (4.18) 

 

Now we substitute equations 4.16 and 4.18 back into the definition of  in equation 4.15: 

 

 𝜂 =
1

4√3𝜋

𝑇𝛼

𝑇
√

𝑌𝑛𝜏〈𝜎𝑣〉

𝑅𝐻𝑆
3 =  

𝑇𝛼

12
√

3

𝜋
√

𝑌𝑛𝜏

𝑅𝐻𝑆
3 (

√𝜎𝑣

𝑇
)      (4.19) 

 

Compare the expression for  in equation 4.19 with the expression for  found earlier in 

equation 4.14a. They are in fact identical. This may appear to be a surprise, but it shouldn’t. Both 

 and  represent that same fundamental assumption – that the hotspot will ignite whenever the 

Lawson criterion embodied in equation 2.1 is satisfied. Once  and  are expressed in terms of 

the same measured quantities Yn, T, RHS and  then both ignition parameters reduce to the same 
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dimensionless expression. This means that Betti’s  and the modified version of Larson and 

Slone’s  are exactly the same when reduced to a measured value. 

 

Finally we give an expression for the Ignition Threshold Factor (experimental) or ITFX which is 

in common use at Livermore. 

 

 𝐼𝑇𝐹𝑋 =  (
𝑌𝑛

4.0×1015) (
𝐷𝑆𝑅(%)

6.7%
)

2.1

       (4.20) 

 

In section V, we will test each ignition parameter and see how well they perform at providing a 

sharp and unambiguous ignition threshold. 
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V. The Performance of Ignition Parameters in Simulations of NIF Capsules 

 

In this section we will use detailed one dimensional code simulations of a realistic ignition 

design to study the performance of 4 ignition parameters. The parameters to be studied are: 

 

1) Ricardo Betti’s  (based on equation 4.14b) 

2) Modified Larson-Slone’s  (based on equation 4.19) 

3)  (based on RT
2
 in equation 4.9a) 

4) ITFX (based on equation 4.20) 

 

Recall that Betti’s  and the modified form of Larson-Slone parameter, , are identical at the 

operational level. That is equation 4.14 and 4.19 are identical. So in actuality there are only three 

ignition parameters to be studied. 

 

The ignition design under consideration in this section uses an ablator made of CH doped with 

0.7% silicon. This design was developed as part of a survey on possible ablator materials, but it 

is very similar to the Revision-5 (Rev-5) design fired many times on NIF.  

 
 

It is worth mentioning that the Rev-5 or low foot shots on NIF have not ignited and that problem 

will be taken up in more detail in section VI. However let us comment briefly here that one 

indication that we have trouble making accurate calculations of Rev-5 is that the measured 

hotspot pressure inferred from equation 4.12 is always 2 to 5 times lower than the hotspot 

pressure calculated by our best ICF simulations. There is no guarantee that the CH design used in 

this section wouldn’t suffer from the same type of discrepancy if it were fired on NIF. However 

we are going to forge ahead with this capsule with the faith that sometime soon, the origin of the 
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discrepancies between our calculations and the measurements of hotspot conditions will be found 

and corrected. 

 

Figure 5.1a shows the pie diagram and figure 5.1b shows the equivalent hohlraum radiation 

temperature for the CH capsule used in this study. It is a conventional four shock ignition design. 

Figure 5.1b shows the equivalent hohlraum radiation temperature but the actual radiation source 

was not a pure Planckian.  

 

This NIF design was studied in one dimension with the CALEICF code using the following 

physics options: 

 

1) Monotonic Sn Radiation Transport 

2) Lee-More Electron Thermal Conduction 

3) Opacities from the LTE version of the Screen Hydrogenic Model (SHM) 

4) Monte-Carlo Charged-Particle Transport 

5) Equation of State (EOS) from LEOS Tables (1018 for DT, 5355 for CH) 

6) KL Turbulence Mix Model [Dimonte 2006] 

 

In all calculations the energy deposition of the thermonuclear neutrons was completely neglected 

which is a reasonable approximation for a NIF scale capsule. In some of the simulations the 

thermonuclear alpha particles properly deposited their energy back into the plasma. Such 

simulations are known as full burn or alpha-on calculations. In other simulations the 

thermonuclear neutron and alpha particles will be produced and counted but no alpha energy will 

be deposited back into the plasma. Such simulations will be known as no-alpha or alpha-off 

simulations. When simulated with a clean (no KL mix) calculation, the capsule depicted in figure 

5.1 absorbs 154.6 KJ and produces a yield of 20.7 MJ. 

 

Clean one dimensional simulations provide only a limited guide to the actual performance of this 

or any ICF capsule. Real ICF capsules simply do not implode and burn like clean one 

dimensional calculations. Obviously the most reliable computational model would be 

numerically converged, three dimensional simulations but no one has succeeded in performing a 

single such converged calculation, let alone the hundreds of calculations needed in this study. As 

a consequence, we will take a less accurate but more practical approach of introducing an 

empirical mix model into our one dimensional simulations. 

 

The KL turbulent mix model was developed to reproduce the observed Rayleigh-Taylor and 

Richtmyer-Meshkov mixing measured by the Linear Electric Motor (LEM) experiments 

[Dimonte 1996, Dimonte 2006]. By its construction the KL model should do reasonably well in 

representing the Rayleigh-Taylor and Richtmyer-Meshkov mixing experienced at the fuel-

ablator interface. The KL model also predicts significant mixing at the hot-spot/cold-fuel 
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boundary as well as at the ablation front. Detailed two and three dimensional simulations also 

predict significant mixing in all three of these regions. However close comparison of the two and 

three dimensional results with the KL results in one dimension reveal that the KL model is 

qualitatively correct but not always quantitatively correct in all details. However in spite of this 

flaw, one dimension simulations of ICF capsules with the KL model are much more realistic than 

clean calculations. 

 

In a KL simulation the initial roughness of a capsule surface can be represented by the initial 

value of the L field at the surface in question. The square root of the sum of the squares of the 

amplitudes for all modes greater than 50 is about 200nm for the inner DT ice of a typical NIF 

shot. When the same procedure is done for the inner surface of a plastic ablator the result is a 

surface roughness of about 10nm. The comparable value for the outer surface of a plastic ablator 

is around 50nm. These values set the scale for the initial L field at these three critical surfaces for 

a standard Rev-5 plastic ablator capsule fired on NIF. However when these nominal values of 

initial L are used in one dimensional KL calculations of real NIF shots, the calculated yields are 

almost always higher than the measured ones. The exception to this over-optimistic behavior are 

some of the recent high foot shots in which KL simulations initialized with the nominal values 

for the surface roughness come close to matching the observed data. 

 

This problem of overly optimistic calculated yields is not limited to the KL model. Highly 

resolved two and three dimensional calculations of actual NIF shots nearly always over predict 

the measured yields as well. A common fudge around this problem is to arbitrarily increase the 

initial surface roughness of the outer ablator. Few researchers believe this is an accurate model of 

reality, instead it is seen as a convenient way to degrade the yield of the calculation until it 

matches the measured value. In much the same way, one dimensional KL calculations can be 

forced to match experimental yields by arbitrarily increasing the initial surface roughness of the 

L field on all three surfaces until the calculated yield matches the observed value. An initial L 

value of around 1000nm placed on all three surfaces generally comes close to matching the 

observed NIF yields of the low foot Rev-5 shots. 

 

This trick of increasing the initial value of L in order to degrade the calculated performance of a 

capsule is exploited in this section to explore the various ignition criteria. Two different series of 

calculations were done with the CH capsule described in figure 5.1. In the first series, the initial 

value of L was 200nm. This initial L value was used at the inner DT ice surface, the ice/ablator 

interface and at the outer ablator surface. The radiation drive for the capsule was randomly 

varied about the nominal drive depicted in figure 5.1b. The temperatures of the foot along with 

the temperatures of the second, third and main pulses were randomly varied both up and down.  

 

For each variation of the radiation drive, two calculations were performed using that same drive. 

In the first calculation, the thermonuclear reactions were turned on but the alpha energy 
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depositions were disabled. The neutron yield, Yn, the temperature, T, determined by the neutron-

time-of-flight spreading, the hotspot radius, RHS, determined by the neutron pinhole image, the 

burn time, , determined by the full-width half-max of the thermonuclear gamma signal and the 

down scattered ratio (DSR) were all extracted from the no-alpha calculation exactly as if the no-

alpha calculation was a synthetic experiment. These five synthetic measurements were inserted 

into equations 4.9b and 4.10b to determine the measured value of  which is based upon RT
2
. 

They were also inserted into equation 4.14b to determine Betti’s  (which is identical to 

modified Larson-Slone ). Lastly these synthetic measurements were inserted in equation 4.20 to 

determine the measured value of ITFX. 

 

In the second calculation for a given drive variation the alpha energy depositions were turned on 

and the specific yield was recorded. The blue diamonds in figures 5.2, 5.3 and 5.4 present the 

results of the first series with an initial L value of 200nm. The specific yield is the total yield of 

the capsule divided by the initial DT mass of the capsule. The specific yield is plotted in units of 

megajoules per milligram. Note that if all of the deuterium and tritium in an equimolar mixture 

are consumed by the D+T reaction the specific yield would be 337.4 MJ/mg. 
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Figure 5.3: Specific yields vs.  for 500 random variations of the drive for the 

CH ignition capsule described in figure 5.1. The blue diamond series represent 

calculations in which all surfaces were initialized with an L value of 200nm. 

The red square series represent calculations initialized with an L value of 

1000nm.  
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A second series of random drive variations were performed with the initial L value of 1000nm on 

all three capsule surfaces. The random drive variations of this second series were similar but not 

identical to the drive variations used in the first series described above. In all other respects the 

second series was identical to the first. The red squares in figures 5.2, 5.3 and 5.4 present the 

results of the second series with an initial L value of 1000nm. 

 

Notice that all three ignition parameters perform well in the task of sorting failed drive variations 

from igniting drive variations. Even as the degradations due to the mix model are increased by 

increasing the initial L from 200nm to 1000nm the location of the ignition cliff barely moves.  

 

This is the characteristic of a good ignition parameter. Let us imagine for a moment a typical 

calculation near the ignition cliff. If we increase the mix by increasing the initial L, then the 

specific yield should drop and we would expect the location of the ignition surface to move to 

the right in the direction of larger values of the ignition parameter. However, the increase in mix 

also decreases the calculated value of the ignition parameter and the location of the calculated 

point moves both downward and to the left. This behavior applies to all points near the ignition 

cliff. With increased mix, they all move downward and to the left, leaving the location of the 

ignition cliff largely unchanged. 
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Measured from no- run 

Figure 5.4: Specific yields vs.  (based on RT
2
) for 500 random variations of 

the drive for the CH ignition capsule described in figure 5.1. The blue diamond 

series represent calculations in which all surfaces were initialized with an L 

value of 200nm. The red square series represent calculations initialized with an 

L value of 1000nm.  
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Brian Spears has recommended an alternative way to graphically display the ignition cliff for a 

given ignition parameter. These are presented in figures 5.6, 5.7 and 5.8. In each of these figures, 

the vertical axis is the ratio of the full burn yield divided by the no-alpha yield. The horizontal 

axis is once again the ignition parameter inferred from the no-alpha calculations. Brian observed 

that the peak of such plots occurs near the top of the ignition cliff and are sharply defined and for 

this reason they provide a clear marker for the location of the ignition cliff. 

 

Figure 5.6 plots the yield ratio verses the measured values of . The peak yield ratio for the 

series with an initial L of 200nm occurs at  = 1.21. The peak yield ratio for the series with an 

initial L of 1000nm occurs at  = 1.20. This is very consistent behavior and is the attribute of a 

good ignition parameter. It should be noted that there is no numerical normalization to . The 

ignition criterion of  > 1 is nothing more than a consistent application of Lawson’s original 

hypothesis. The fact that the capsule studied in this section exhibits a threshold near  = 1.2 

confirms the validity of Lawson’s hypothesis.  
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Measured ITFXfrom no- run 

Figure 5.5: Specific yields vs. ITFX for 500 random variations of the drive for 

the CH ignition capsule described in figure 5.1. The blue diamond series 

represent calculations in which all surfaces were initialized with an L value of 

200nm. The red square series represent calculations initialized with an L value 

of 1000nm.  
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Figure 5.7 plots the yield ratio verses the measured values of  based on RT
2
. The peak ratio for 

the L0 = 200nm series is at  = 1.09 and the peak ratio for the L0 = 1000nm series occurs at  = 

1.11. Once again this is very consistent behavior and indicates that  is a good ignition 

parameter. Unlike the case of , the fact that the ignition threshold for  is near unity should not 

be a surprise because the definition of  includes a normalization factor derived from solving the 

tamped Meldner problem so  has already been normalized by numerical calculations.  

 

Figure 5.8 plots the yield ratio verses the measure values of ITFX. The peak ratio for the L0 = 

200nm series is ITFX = 1.21. The peak ratio for the L0 = 1000nm series is ITFX = 1.34. Once 

again we see consistent behavior which indicates that ITFX is a good ignition parameter. 

However the fact that the ignition threshold for ITFX is near 1.25 is a bit of a surprise. The 

original intent behind ITFX was to normalize it such that an ITFX value of 1.0 would represent a 

50% chance of ignition. Look closely at figure 5.5 again. The midpoint of the ignition cliff is 

around ITFX = 1.15 rather than the expected 1.00. I’m not sure what caused this discrepancy. 
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Measured from no- run 

Figure 5.6: The ratio of the full burn yield to the no-alpha yield vs. the 

experimentally inferred value of . The blue diamond series represent 

calculations in which all surfaces were initialized with an L value of 200nm. 

The red square series represent calculations initialized with an L value of 

1000nm. The peak of the yield ratio is a good marker for the location of the 

ignition cliff. For the L = 200nm series the peak occurs at  = 1.21. For the L = 

1000 nm series the peak occurs at  = 1.20. 
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Figure 5.9 explores the relationship between  and ITFX by plotting the measured ITFX from 

the no-alpha calculations verses the measured  also from the no-alpha calculations. Also plotted 

is the least squares fit to a power law which turns out to be: 

 

 𝐼𝑇𝐹𝑋 = 0.80084𝜒2.1765        (5.1) 

 

According to Brian Spears the expected relationship between ITFX and  should be: 

 

 𝐼𝑇𝐹𝑋 = 𝜒8/3 = 𝜒2.6667        (5.2) 

 

Since  exhibits an ignition threshold near  = 1.20, if equation 5.2 was true then we would 

expect ITFX to exhibit an ignition threshold near: 

 

 𝐼𝑇𝐹𝑋(𝑇ℎ𝑒𝑠ℎ𝑜𝑙𝑑) = (1.20)8/3 = 1.62      (5.3) 
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Measured from no- run 

Figure 5.7: The ratio of the full burn yield to the no-alpha yield vs. the 

experimentally inferred value of . The blue diamond series represent 

calculations in which all surfaces were initialized with an L value of 200nm. 

The red square series represent calculations initialized with an L value of 

1000nm. The peak of the yield ratio is a good marker for the location of the 

ignition cliff. For the L = 200nm series the peak occurs at  = 1.09. For the L = 

1000 nm series the peak also occurs at  = 1.11. 



43 
 

 

 

F
u
ll

 B
u
rn

 Y
ie

ld
/N

o
-a

lp
h
a 

Y
ie

ld
 

Measured ITFXfrom no- run 

Figure 5.8: The ratio of the full burn yield to the no-alpha yield vs. the 

experimentally inferred value of ITFX. The blue diamond series represent 

calculations in which all surfaces were initialized with an L value of 200nm. 

The red square series represent calculations initialized with an L value of 

1000nm. The peak of the yield ratio is a good marker for the location of the 

ignition cliff. For the L = 200nm series the peak occurs at ITFX = 1.31. For the 

L = 1000 nm series the peak occurs at ITFX = 1.24. 
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Measured from no- run 

Figure 5.9: The measured ITFX vs. the measured . Both ignition parameters 

were taken from no-alpha runs. Also plotted is the least squares fit to a power 

law which is ITFX = 0.8084
2.1765

. 
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However figure 5.9 demonstrates that equation 5.2 is not true of the numerical simulations. The 

observed relationship between ITFX and  is summarized by equation 5.1. Hence we expect 

ITFX to exhibit a threshold near: 

 

 𝐼𝑇𝐹𝑋(𝑇ℎ𝑒𝑠ℎ𝑜𝑙𝑑) = 0.8084(1.20)2.1765 = 1.20     (5.4) 

 

Figure 5.8 shows that ITFX does in fact exhibit an ignition threshold very close to ITFX = 1.2.  

 

In the real world it is not possible to turn off alpha energy depositions and yet the ignition 

thresholds are conventionally formulated in terms of no-alpha ignition parameters. It is useful to 

discovery a relation between the ignition parameters with alpha depositions turned on and the 

ignition parameters with alpha depositions turned off. Figures 5.10, 5.11 and 5.12 plot the 

ignition parameters with alpha depositions turned off in the vertical versus alpha depositions 

turned on along the horizontal. The data points were taken from the L0 = 1000nm series 

discussed earlier in this section. The figures also plot simple fits to the data shown as the red 

curves. 
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Measured from alpha-on run 

Figure 5.10: The measured  from alpha-off calculation vs. the measured  

from alpha-on calculation. The red curve is a simple fit (equation 5.5). 
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Measured from alpha-on run 

Figure 5.11: The measured  from alpha-off calculation vs. the measured  

from alpha-on calculation. The red curve is a simple fit (equation 5.6). 
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Measured ITFXfrom alpha-on run 

Figure 5.12: The measured ITFX from alpha-off calculation vs. the measured 

ITFX from alpha-on calculation. The red curve is a simple fit (equation 5.7). 
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Simple fits were found for all three data patterns. For the ignition parameter , the best fit was: 

 

 𝜒𝛼−𝑂𝑓𝑓 = 1.3(1 − 𝑒𝑥𝑝(−0.77𝜒𝛼−𝑂𝑛))      (5.5) 

 

The RMS error for the  fit is 2.5%. For the ignition parameter , the best fit was: 

 

 𝛽𝛼−𝑂𝑓𝑓 = 1.11(1 − 𝑒𝑥𝑝(−𝛽𝛼−𝑂𝑛))       (5.6) 

 

The RMS error for the  fit is 1.2%. For ITFX, the best fit was: 

 

 𝐼𝑇𝐹𝑋𝛼−𝑂𝑓𝑓 = [1.11 (1 − 𝑒𝑥𝑝(−0.90909(𝐼𝑇𝐹𝑋𝛼−𝑂𝑛)1/1.94))]
1.94

   (5.7) 

 

The RMS error for the ITFX fit is 2.7%. 

 

In section VI, we will use these fits to transform measured alpha-on data from NIF shots into the 

expected alpha-off values. 
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VI. Ignition Parameters on NIF shots 

 

We can use the expressions developed in section IV to infer the experiment values of RT
2
,  

and ITFX for a collection of actual NIF shots. Table 6.1 presents some of the basic data for 25 

NIF shots. The average ion temperature (Tion) was determined by the time of flight spreading to 

the NTOF detector. The burn duration () was taken as the FWHM of the thermonuclear gamma 

signal. The radius of the hot spot (RHS) was taken from the P0 moment of the 17% contour from 

the neutron pin-hole image. The down scattered ratio (DSR) is the ratio of measured number of 

neutrons between 10 to 12 MeV divided by the measured number of neutrons between 13 and 15 

MeV.  

 

Table 6.1 Measured Data from 25 NIF Shots 

Shot Yn Tion  RHS DSR 

 10
15

 KeV ns m 

110603 0.0642616 2.63884 0.220 25.3 4.326 

110608 0.190962 3.10552 0.215 33.0 4.333 

110615 0.43002 3.31903 0.215 38.4 3.537 

110620 0.4113 4.3157 0.122 24.5 4.526 

110826 0.17054 3.0617 0.180 25.0 3.880 

110914 0.574 3.58679 0.171 28.3 4.880 

111103 0.231342 3.2844 0.190 30.1 3.914 

111112 0.602045 3.89828 0.154 30.9 4.211 

111215 0.745 3.5325 0.180 28.0 4.307 

120126 0.317184 2.87943 0.175 24.9 3.917 

120131 0.620336 3.87902 0.199 32.7 3.698 

120205 0.604543 3.43133 0.155 28.0 4.347 

120321 0.415645 3.06822 0.158 26.0 6.258 

130501 0.767 3.02 0.172 37.9 2.960 

130802 0.48 2.85 0.216 38.9 2.840 

130927 4.42 4.43 0.188 35.4 3.660 

131119 5.237 4.77 0.156 37.2 3.800 

140120 8.002 5.58 0.170 35.2 3.900 

140304 8.125 5.83 0.168 33.9 3.820 

140511 6.1813 5.36 0.147 33.2 4.040 

140520 5.237 5.49 0.156 37.2 4.320 

141123 1.100 3.40 0.108 25.7 5.450 

131212 1.830 3.55 0.161 33.0 2.300 

140722 0.371 3.38 0.198 38.9 2.080 

140926 0.280 3.84 0.154 36.6 2.200 
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The experimental numbers listed in table 6.1 were inserted into equations 4.7b, 4.8b and 4.9b to 

determine the  ignition parameter based on RT
2
. They were also inserted into equation 4.14b 

to determine the  ignition parameter and finally they were inserted into equation 4.20 to 

determine ITFX. The inferred ignition parameters for the 25 NIF shots are listed in table 6.2. 

 

 

Table 6.2: Inferred Ignition Parameters 

Shot Yn Spec Y    ITFX 
 1015 MJ/mg --- --- --- 

110603 0.0642616 0.001034 0.1582 0.1025 0.0064 

110608 0.190962 0.003011 0.1433 0.1413 0.0191 

110615 0.43002 0.007253 0.1689 0.1815 0.0281 

110620 0.4113 0.006819 0.3613 0.3386 0.0451 

110826 0.17054 0.002804 0.1856 0.1826 0.0135 

110914 0.574 0.009318 0.2842 0.3204 0.0738 

111103 0.231342 0.003767 0.1776 0.1783 0.0187 

111112 0.602045 0.009677 0.2917 0.2965 0.0568 

111215 0.745 0.011971 0.3083 0.3745 0.0736 

120126 0.317184 0.005258 0.2280 0.2304 0.0257 

120131 0.620336 0.010266 0.2519 0.3119 0.0445 

120205 0.604543 0.010070 0.2933 0.3042 0.0609 

120321 0.415645 0.006581 0.2614 0.2523 0.0900 

130501 0.767 0.012599 0.2190 0.1997 0.0334 

130802 0.48 0.007867 0.1621 0.1592 0.0198 

130927 4.42 0.068884 0.5349 0.8118 0.3104 

131119 5.237 0.081617 0.6103 0.7946 0.3979 

140120 8.002 0.128041 0.8075 1.2603 0.6421 

140304 8.125 0.129543 0.8736 1.3759 0.6242 

140511 6.1813 0.098553 0.7933 1.0889 0.5342 

140520 5.237 0.083498 0.6707 0.8859 0.5209 

141123 1.100 0.018234 0.3773 0.4845 0.1782 

131212 1.830 0.030521 0.3681 0.4494 0.0484 

140722 0.371 0.006079 0.1744 0.1504 0.0080 

140926 2.800 0.047319 0.4059 0.5145 0.0675 

 

A close inspection of table 6.2 reveals that some of the recent high foot shots have come very 

close to the expected ignition threshold. Take for example shot N140304. It has an inferred value 

of  = 0.8736 and an inferred value of  = 1.3759. We saw in section V, that the ignition 

threshold for  with no alpha depositions was  = 1.1 (see figure 5.7). The threshold for  with 

no alpha depositions was around  = 1.2 (see figure 5.6). Shot N140120 also appears to be near 

the expected threshold with an inferred  of 0.8075 and an inferred  of 1.2603.  
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Based on their measured values for  and , both N140120 and N140304 appear to be very close 

to the ignition threshold but unfortunately that appearance is somewhat misleading. These high 

performing shots almost certainly experienced significant alpha heating and the measured values 

of  or  no longer correspond to the no-alpha values used to estimate the location of the ignition 

thresholds in section V. The effect of alpha heating increases the measured values of  and  and 

therefore gives the appearance that the shot is closer to the ignition threshold than is warranted. 

However the observation that the best performing shots have experienced significant alpha 

heating is in itself, evidence that these shots are getting close to ignition. 

 

In section V we noted correlations between ignition parameters with alpha depositions turned on 

and alpha depositions turned off. These correlations are reproduced here: 

 

 𝛽𝛼−𝑂𝑓𝑓 = 1.11(1 − 𝑒𝑥𝑝(−𝛽𝛼−𝑂𝑛))       (5.6) 

 𝜒𝛼−𝑂𝑓𝑓 = 1.3(1 − 𝑒𝑥𝑝(−0.77𝜒𝛼−𝑂𝑛))      (5.5) 

 𝐼𝑇𝐹𝑋𝛼−𝑂𝑓𝑓 = [1.1 (1 − 𝑒𝑥𝑝(−0.90909(𝐼𝑇𝐹𝑋𝛼−𝑂𝑛)1/1.94))]
1.94

   (5.7) 

 

These correlations fit the data of section V with errors of 1 to 3%. We can use these correlations 

to transform the measured ignition parameters with alpha depositions turned on listed in table 6.2 

into the equivalent values we would expect if we could turn off alpha depositions in nature. 

Table 6.3 lists the transformed ignition parameters for the 25 NIF shots.  

 

Notice that the transformed ignition parameters of the best performing shots such as N140120 

and N140304 are still very high but have dropped below the expected ignition thresholds. 

 

Figures 6.1, 6.2 and 6.3 compare the NIF data for each ignition parameter against the L0 = 

1000nm series of calculations described in section V. In each figure the horizontal axis is the 

ignition parameter and the vertical axis is the specific yield in MJ/mg. The horizontal axis for the 

blue squares use the calculated ignition parameter with alpha depositions turned on. The 

horizontal axis for the red squares use the calculated ignition parameter with alpha depositions 

turned off. The horizontal axis for the green triangles use the inferred ignition parameters for the 

NIF listed in table 6.2 (alpha-on values). The horizontal axis for the purple triangles use the 

transformed ignition parameters listed in table 6.3 (alpha-off values). 
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Table 6.3:  

Expected No-Alpha Ignition Parameters 

Shot    ITFX 
 --- --- --- 

110603 0.1625 0.0987 0.0060 

110608 0.1482 0.1340 0.0171 

110615 0.1725 0.1696 0.0245 

110620 0.3366 0.2984 0.0378 

110826 0.1881 0.1705 0.0123 

110914 0.2746 0.2842 0.0589 

111103 0.1806 0.1668 0.0167 

111112 0.2808 0.2654 0.0466 

111215 0.2945 0.3257 0.0588 

120126 0.2263 0.2113 0.0225 

120131 0.2471 0.2776 0.0374 

120205 0.2822 0.2715 0.0496 

120321 0.2553 0.2295 0.0702 

130501 0.2183 0.1853 0.0296 

130802 0.1661 0.1500 0.0176 

130927 0.4598 0.6042 0.1955 

131119 0.5070 0.5949 0.2360 

140120 0.6150 0.8074 0.3320 

140304 0.6466 0.8494 0.3256 

140511 0.6079 0.7379 0.2922 

140520 0.5424 0.6428 0.2870 

141123 0.3488 0.4048 0.1255 

131212 0.3418 0.3803 0.0404 

140722 0.1777 0.1422 0.0074 

140926 0.3704 0.4252 0.0544 

 

Notice in figures 6.1 and 6.2 both the red and the blue calculated series seem to converge near  

=  = 0.4 and both series appear to pass through the cluster of low performing NIF shots. It 

would appear that there is not much alpha heating below  =  = 0.4. However a closer 

examination of figures 6.1 and 6.2 reveals that even below 0.4, the presence of alpha heating can 

shift the  or  coordinate by 20% or more. Only when  or  drops below 0.2 do the alpha-on 

and the alpha-off coordinates differ by less than 10%. 
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The separation of the alpha-on and alpha-off data series is a little easier to see in figure 6.3 which 

uses ITFX as the horizontal coordinate. The red series (alpha-off) terminates around ITFX = 0.08 

while the blue series (alpha-on) terminates around ITFX = 0.12. This means that even with ITFX 

as low as 0.10, the effect of alpha heating can change the ITFX parameter by more than 50%. 

 

Notice in figure 6.1 using  as the coordinate, the NIF data points are quite a bit higher than the 

calculated points. Having the measured specific yields higher than the calculated yields sounds 

like a good thing, but such behavior casts doubt on the value of the calculated series as a guide 

for the likely performance of future shots. 
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 (-off)  

 (-on)  

Figure 6.1: The specific yield versus the inferred ignition parameter . The 

triangles represent NIF data. The squares came from the L0 = 1000nm series of 

section V. The blue squares include alpha energy depositions. The red squares 

omit alpha depositions. The green triangles represent measured NIF data. The  

values of the purple triangles have been transformed into no-alpha equivalent by 

equation 5.6. 

Measured  
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The situation is better in figure 6.2 which uses  as the coordinate. Here we see rough agreement 

between the NIF data points and the calculated series. There is rough agreement for the actual 

NIF points which have alpha depositions turned on but there is also rough agreement for the 

transformed NIF points which represent what would happen if we could turn off the alpha 

depositions in the experiment. 

 

Figure 6.3 using ITFX as the horizontal coordinate agrees with the data about as well as the  

parameter seen in figure 6.1. There is a good chance that if the calculated series were continued 

to lower levels of performance, the general trend of the calculated series would pass right 

through the cluster of low performing NIF shots. However the high performing NIF shots do not 

match the calculated series very well. It doesn’t really matter whether we consider curves with 

alpha depositions on or off. Either way the high performing shots don’t match the calculated 

trends.  

 

Overall, the ignition parameter that produces the best match to the data is , plotted in figure 6.2. 

The agreement is by no means perfect, but the calculated and measured points are following 

similar trends. This is true for both the alpha-on plots as well as the alpha-off plots. 

 

S
p
ec

if
ic

 Y
ie

ld
 (

M
J/

m
g
) 

Inferred  

Figure 6.2: The specific yield versus the inferred ignition parameter . The 

triangles represent NIF data. The squares came from the L0 = 1000nm series of 

section V. The blue squares include alpha energy depositions. The red squares 

omit alpha depositions. The green triangles represent measured NIF data. The  

values of the purple triangles have been transformed into no-alpha equivalent by 

equation 5.5. 

 (-off)   (-on)  
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Figure 6.4 is the same as figure 6.2 with the vertical axis extended to higher specific yields. This 

allows us to see just how close the best NIF shots are to climbing up the steepest part of the 

ignition cliff represented by the calculational series plotted with the red squares. If the 

calculations bear any resemblance to reality, then even small increases in hotspot pressure should 

result in much larger increases in neutron yield. 

 

The best shots have an estimated (alpha-off) of 0.85. Ignition should occur with an (alpha-off) 

of around 1.2. This means if the hotspot pressure could be increased by 50% while leaving the 

time  and the temperature T unchanged, it is very likely NIF would finally achieve ignition.  
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Figure 6.3: The specific yield versus the inferred ignition parameter ITFX. The 

triangles represent NIF data. The squares came from the L0 = 1000nm series of 

section V. The blue squares include alpha energy depositions. The red squares 

omit alpha depositions. The green triangles represent measured NIF data. The 

ITFX values of the purple triangles have been transformed into no-alpha 

equivalent by equation 5.7. 

 

ITFX (-off)  

ITFX (-on)  
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However there is a well-known discrepancy between the hotspot pressure estimated by ICF 

codes and the measured hotspot pressured inferred from equation 4.12. Table 6.4 lists the 

experimentally inferred hotspot pressures and the code calculation of the hotspot pressures. Note 

that the actual pressures are 20% to 80% of the code’s calculated pressures. If the source of this 

discrepancy could be found and corrected in some way, the resulting increase in hotspot pressure 

would most likely increase all ignition parameters to the point that ignition would follow. 
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Figure 6.4: The specific yield versus the inferred ignition parameter . The 

triangles represent NIF data. The squares came from the L0 = 1000nm series of 

section V. The blue squares include alpha energy depositions. The red squares 

omit alpha depositions. The green triangles represent measured NIF data. The  

values of the purple triangles have been transformed into no-alpha equivalent by 

equation 5.7. The best shots are climbing up the ignition cliff. 

 

Best shots are climbing 

up the ignition cliff 
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Table 6.4:  

Measured and Predicted Hotspot Pressures 

Shot Measured P Code P  Measured/Code 
 Gbars Gbars --- 

110603 34.58 152.27 0.2271 

110608 33.58 147.52 0.2276 

110615 37.37 89.78 0.4162 

110620 73.78 181.43 0.4066 

110826 53.40 258.36 0.2067 

110914 70.60 262.23 0.2692 

111103 42.45 144.94 0.2929 

111215 80.93 209.84 0.3857 

120126 79.66 145.98 0.5457 

120131 50.69 142.85 0.3549 

120205 80.87 115.00 0.7032 

120321 83.71 186.58 0.4486 

130501 62.91 72.13 0.8722 

130802 45.63 137.58 0.3317 

130927 109.28 207.25 0.5273 

140120 129.55 344.57 0.3760 
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VII. Conclusions 

 

In this report, four ignition parameters have been studied, , , , and ITFX. In section II all of 

the associated ignition criteria except for ITFX were derived from Lawson’s fundamental 

hypothesis that ignition occurs when the thermonuclear heating rate exceeds the plasma’s 

cooling rate or dissipation rate. It has been shown elsewhere and confirmed in section V that 

ITFX is highly correlated with the  ignition parameter and hence all of the other Lawson based 

ignition parameters. Also in section V, it was shown that all four of the ignition parameters 

studied perform well on realistic one-dimensional calculations of a NIF ignition design. Hence 

one conclusion of this report is that even though these ignition parameters differ in some of their 

details, their theoretic underpinning and their actual performance as ignition parameters are all 

very similar.  

 

In section IV it shown that all of the ignition parameters could be inferred directly from the NIF 

data with minimal reliance on ICF codes. In section VI the measured performance of 25 NIF 

shots was compared against generic code simulations. None of the generic code simulations 

matched the NIF data exactly, however the parameter  provided the best overall match to the 

data. 

 

Figure 6.4 in section VI presents the measured NIF data versus the generic code simulations 

using  as the ignition parameter. A close inspection of figure 6.4 suggests that the best 

performing NIF shots are just about to climb up the steepest part of the ignition cliff as seen 

when using  as the ignition parameter. Figure 6.4 indicates that a 50% increase in the no-alpha 

value of  would most likely be enough to achieve ignition. Such a 50% increase in  is of the 

same order of magnitude as the discrepancy between the ICF code’s estimate of the hotspot 

pressure and the actual hotspot pressure inferred directly from the NIF data seen in table 6.4. 

Hence we are led to the final conclusion that if the origin of the discrepancy in the hotspot 

pressure could be located and corrected in some way, there is a very good chance that ignition 

could then be achieved. 
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